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Abstract

We extend the Huggett model to consider recursive preferences in continuous time.

We then analyze the role of relative risk aversion (RRA) and elasticity of intertempo-

ral substitution (EIS) in determining the equilibrium interest rate and the stationary

wealth and consumption distributions. We show that EIS plays a crucial role in shap-

ing wealth and consumption distribution at the aggregate and agent-type levels, while

RRA plays a marginal role. Additionally, EIS has strong effects on interest rate and

leverage compared to RRA. Our model is characterized by wealth and income het-

erogeneity among agents, incomplete markets, and a quantitative separation between

RRA and EIS, providing a baseline framework for macro-finance models.
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difference; labor income risk.
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1 Introduction

Heterogeneity among agents and the quantitative separation between Relative Risk Aver-

sion (RRA) and Elasticity of Intertemporal Substitution (EIS) are two fundamental com-

ponents of modern macroeconomic and asset pricing models (e.g., Kaplan and Violante,

2018; Achdou et al., 2022; Pohl et al., 2021). However, incorporating both of these ele-

ments into a single framework complicates the search for model solutions. Consequently,

researchers often simplify one of these components: either heterogeneity is reduced, for

instance, to only two agents, or the quantitative separation of RRA and EIS is ignored

by assuming Constant Relative Risk Aversion (CRRA) preferences (e.g, Wang, 1996; Pohl

et al., 2021; Fernández-Villaverde et al., 2023).

In our study, we explicitly incorporate these two key modeling elements–heterogeneity

and quantitative separation between RRA and EIS–into the continuous-time version of

the Huggett (1993) model, which stands as a leading and tractable macroeconomic model.

Specifically, we extend the continuous-time version developed by Achdou et al. (2022) by

introducing recursive preferences from Epstein and Zin (1989). As a result, our model

is characterized by incomplete markets, labor income represented by a two-state Poisson

process, wealth and income heterogeneity among agents, and recursive preferences.

Equipped with this model, we proceed to analyze the roles of EIS and RRA in de-

termining the existence of equilibrium, the optimal policy functions (consumption and

saving), the shape of wealth and consumption distribution, and the equilibrium interest

rate and leverage.

We first demonstrate that equilibrium is typically achieved when the RRA exceeds

one and the EIS is less than one. This finding remains robust even when we modify

our baseline calibration. It is important to note that this result is contingent upon our

modeling assumptions, such as the dynamics of labor income and their calibration. This

analysis leads us to explore the economic dynamics in a range of values for RRA and EIS.

Second, we show that the EIS plays a crucial role in shaping both aggregate and

agent-level distributions. Specifically, variations in EIS lead to greater dispersion in wealth

distribution at both aggregate and agent levels, with particularly pronounced effects among

high-income agents. Similarly, changes in EIS lead to increased dispersion in consumption

distribution at both levels, with particularly notable impacts among low-income agents.

In contrast, we find that adjustments in RRA have marginal impacts on the wealth and

consumption distribution among both low and high-income agents.

Third, we delve into the determination of interest rates and leverage in the economy.

Our numerical simulations reveal that the EIS has a more significant impact on the equi-

librium interest rate than RRA. This finding underscores the crucial role of EIS in shaping

wealth and consumption distributions. Moreover, the leverage ratio, defined as total lever-

age over total income, shows a gradual decrease with RRA but a substantial increase with

EIS. The meaningful impact of EIS on leverage is elucidated by its effects on interest rates.

These results underscore the distinct roles and size effects of EIS and RRA in determin-

ing the equilibrium interest rate and stationary distributions within heterogeneous-agent

models, with a particular emphasis on the crucial role of EIS. Consequently, neglecting
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recursive preferences in such models would restrict our understanding of the effects of

structural parameters on economic dynamics.

From a technical perspective, we solve the model by approximating derivatives using

the finite difference method with an upwind scheme. Our approach is based on Achdou

et al. (2022) but with some modifications. First, we multiply the Hamilton-Jacobi-Bellman

(HJB) equation by θ = (1−1/EIS)/(1−RRA) to explicitly consider the effects of RRA and

EIS greater or less than one on the finite difference technique. This subtle but important

detail does not appear with CRRA preferences (i.e., θ = 1). Neglecting this consideration

could lead to a mistaken implementation of the upwind scheme. Second, the aggregator f

in the recursive utility function has been evaluated such that the HJB equation becomes

equivalent to one with CRRA preferences when θ = 1. This assures us that our model has

a solution for a CRRA case and provides us with a benchmark for comparison.

Our paper contributes to the heterogeneous-agent literature in macroeconomics and

asset pricing (e.g., Huggett, 1993; Wang, 1996; Krusell et al., 2011; Longstaff and Wang,

2012; Gârleanu and Panageas, 2015; Schneider, 2022; Achdou et al., 2022; Fernández-

Villaverde et al., 2023). We do so by embedding recursive preferences into a heterogeneous-

agent model with incomplete markets. Specifically, we demonstrate that the Elasticity of

Intertemporal Substitution (EIS) has stronger distributional effects than Relative Risk

Aversion (RRA), and the quantitative distinction between EIS and RRA is relevant for

understanding agents’ optimal decisions, stationary distributions, interest rates, and lever-

age.

Our results align with findings from other studies, such as Schneider (2022), who

show that EIS is crucial for explaining the term structure of interest rates. A closely

related paper is Wang et al. (2016), which also explores recursive preferences in optimal

decision-making. However, our study complements theirs in several key aspects. Firstly,

while Wang et al. (2016) focuses on a representative agent, we consider heterogeneity

in wealth and income among agents. Secondly, with a heterogeneous-agent model, we

directly explore the effects of RRA and EIS on distributions from the model solution,

distinguishing our approach from Wang et al. (2016). Thirdly, the endogeneity of the

interest rate in our model allows us to study general equilibrium effects, whereas it is

exogenous in Wang et al. (2016).

Overall, our findings underscore the importance of quantitatively distinguishing be-

tween RRA and EIS in heterogeneous-agent models.

The remainder of this paper is organized as follows. Section 2 describes the heterogeneous-

agent model with Epstein and Zin (1989) preferences. Section 3 presents a quantitative

analysis and Section 4 examines the distributional effects of RRA and EIS. Section 5 ex-

plores how leverage is determined in the economy and Section 6 concludes. Appendix

A provides the proofs and derivations, Appendix B explains the implementation of fi-

nite difference and upwind scheme, and Appendix C shows convergency analysis using an

alternative calibration.
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2 The Model

We develop the model in two steps. We start by defining the set of assumptions in the

economic setting section and, then, we define the equilibrium and the strategy to find it.

2.1 Economic Setting

2.1.1 Uncertainty, Information Structure, and Beliefs

Uncertainty. The uncertainty in the economy is represented by a filtered probability space

{Ω,F ,F,P}, in which a two-state Poisson process y is defined. Specifically, y represents

the agent’s income in every period changing randomly over time. This income can take two

values y ∈ {y1, y2}, with y1 < y2. We also assume that the sample paths of y completely

determine the true state of nature over time.

Information structure. The σ-field Ft is interpreted as representing the information

available at time t. Furthermore, {Fy
t } is the augmented filtration generated by y.

Beliefs. The probability measure P is interpreted as representing the agents’ common

beliefs. Furthermore, all stochastic processes in this model are progressively measurable

with respect to F.

2.1.2 Goods Market

Supply side. As in Huggett (1993), We assume an endowment economy. Specifically, the

agent receives an exogenous labor income y every period.

Demand side. The consumption space C+ is defined as the set of positive, adapted con-

sumption rate processes c that satisfy the integrability condition∫ T

0
c2jtdt ≤ ∞, (1)

for every agent j in the economy.

2.1.3 Financial Markets

A. Financial Market Type. Financial markets are incomplete in the sense that there

is only one riskless asset in the economy (a bond). Consequently, agents cannot fully

hedge against the uncertainty in their income; that is, their income may be low (y1) in

some periods and high (y2) in others

B. Financial Assets’ Characteristics. The investment opportunity, represented by

only one asset, is the riskless asset. This asset can equivalently be interpreted as a credit

market where borrowers and lenders interact at the equilibrium interest rate rt. Conse-

quently, lenders represent agents demanding the riskless asset, while borrowers are agents

supplying it. We assume that the net supply of this asset is zero.
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2.1.4 Agents

Next, We model the agents’ behavior that populated the economy. We split the agent

modeling into five stages: the number of agents, the individual endowment, preferences,

budget constraint (or wealth dynamic), and the agent’s optimization problem.

A. The Number of Agents. The economy is populated by a continuous of agents who

are heterogeneous in wealth a and labor income y.

B. Endowment. Every agent k is endowed with labor income yt every period. Since

y follows a continuous-time Poisson process, its conditional probabilities are defined as

follows

P12 ≜ Prob[yt+∆ = y2 | yt = y1] = λ1∆+ o(∆), (2)

P11 ≜ Prob[yt+∆ = y1 | yt = y1] = 1− λ1∆+ o(∆), (3)

where, Pij is the (conditional) probability that the agent has a level of income yj in the

next period t + ∆, given that he has yi in period t. For instance, P11 represents the

probability of an agent have the same income y1 in period t and t+∆ (i.e., he stays in the

state one). Furthermore, the probability of changing states is associated with an intensity

parameter λ. Specifically, the income jumps from state 1 (y1) to state 2 (y2) with intensity

λ1 and vice versa with intensity λ2.

It is worth noting that the intensity parameters, λ1 and λ2, and the income levels,

y1 and y2, are exogenous. As ∆ becomes infinitesimally small, conditional probabilities

approach:

P11 = e−λ1 , P12 = 1− P11 (4)

P22 = e−λ2 , P21 = 1− P22 (5)

C. Preferences. The investor’s utility function is given by the Stochastic Differential

Utility (SDU), which is the continuous-time equivalent of recursive utility of Epstein-Zin.

Vt is the SDU of agent j at time t expressed as1

Vj,t = Et

[∫ ∞

t
f(cj,s, Vj,s)ds

]
(6)

where f(·) is a function called normalized aggregator defined as

f(cj , Vj) =
1

1− δ
(1− γ)Vj ×

[
c1−δ
j [(1− γ)Vj ]

− 1−δ
1−γ − ρ

]
, γ ̸= 1, δ ̸= 1, (7)

1The literature places ρ (discount rate) differently into f(·). For instance, in Wang et al. (2016), ρ is

a multiplicative term at the very beginning. In Schneider (2022), it is an additive term in the biggest

parentheses as Eq. (7). Both modeling ways are similar since ρ consistently appears or not in the FOC. In

the case of Wang et al. (2016) (multiplicative), ρ appears in the FOC, while in Schneider (2022)(additive),

it does not. Both alternatives generate the HJB with CRRA preferences.
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with θ = (1− δ)/(1− γ). The relative risk aversion (RRA) and elasticity of intertemporal

substitution (EIS) of agent j are γ and 1/δ, respectively. The subjective discount rate

is represented by ρ. The well-known time-additive separable CRRA utility function is a

special case of the SDU where RRA is the inverse of EIS; that is, γ = δ, implying θ = 1.

In this case, f(cj , Vj) = c1−γ
j /(1− γ)− ρVj

D. Wealth Dynamic and Borrowing Constraint. Three forces drive the change

in the agent’s wealth ajt: his income yjt, his savings in the riskless asset ajt, and his

consumption cjt. Therefore, the wealth dynamic of agent j is given by

dajt = (yjt + rtajt − cjt) dt, j = 1, 2, (8)

E. Stochastic Optimal Control Problem. The stochastic optimal control problem

of agent k, P, is defined as

max
{cjt}

Et

[∫ ∞

t
f(cj,s, Vj,s)ds

]
, (9)

subject to the wealth dynamic, borrowing constraint, and income process:

Wealth dynamic of agent : dajt = (yjt + rtajt − cjt) dt (10)

Borrowing constraint : ajt ≥ a (11)

Income process : yjt ∈ {y1t, y2t} with λ1, λ2 and y1t < y2t (12)

Agents solve this problem by taking as given the interest rate rt,∀t ≥ 0. We transform

this problem into a stochastic dynamic programming one as Achdou et al. (2022).

2.2 The Equilibrium

We define equilibrium in the economy as follows.

Definition 1. Equilibrium in this economy is defined as consumption processes {c1, c2}
and a price system {r} such that at every period t: (i) agents maximize their expected

discounted utility function taking as given the equilibrium interest rate; i.e., they solve the

optimization problem P (Eq. 9 - 12), and (ii) all markets (bonds and goods market) clear.

The bond market equilibrium condition is given by

S(r)︸︷︷︸
Total bonds
demand

≡
∫ ∞

a
adG1(a, t)︸ ︷︷ ︸

bonds demand from agents
who have income y1

+

∫ ∞

a
adG2(a, t)︸ ︷︷ ︸

bonds demand from agents
who have income y2

= B︸︷︷︸
fixed

bonds supply

, (13)

where the aggregate bond demand is represented by S(r) and the aggregate supply is fixed

and equals B. We assume the bond is in zero net supply and then B = 0. Furthermore,

Gj(a, t) is the cumulative join distribution function (CDF) for agent type j at period t

(income-wealth distribution), and dG̃j(a) = gj(a)da. Furthermore, gj(a, t) represents the
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density of the joint distribution of yj and a in period t. The equilibrium condition for the

goods market is given by

cjt + sjt = yjt + rtajt, j ∈ {1, 2}, (14)

where sjt is the saving of agent j and it is equals to the change of his wealth da/dt.

2.2.1 Finding the Equilibrium

We are interested in the stationary equilibrium; that is, an equilibrium in which the

joint income-wealth distribution is invariant over time and the corresponding optimal

consumption, saving, and the equilibrium interest rate.

The Strategy. Finding the stationary equilibrium can be split into three steps. The first

one is the stochastic dynamic programming problem. This step transforms the stochastic

optimal control problem P (Eq. 9 - 12) into the HJB equation for every agent j resulting in

two PDEs of the agent’s value function: one for each income type. Then, We calculate the

first-order conditions (FOCs) with respect to consumption. The second step is to obtain

the PDE of the joint income-wealth density gj(a), called the Kolmogorov Forward (KF)

(or Fokker-Planck) equation. The solution of this PDE gives us the stationary distribu-

tion. The third step is to represent the model as a system of partial differential equations

(PDEs) (HJB and KF equations) with equilibrium conditions, first-order conditions, and

constraints.

We solve these PDEs in Section 3 using the finite difference method with the upwind

scheme. Heuristically, the algorithm is as follows: given an initial value function and

interest rate, the HJB equation is solved. Then, using the policy functions, we solve the

Kolmogorov Forward equation, providing a density function. Next, the interest rate is

calculated using the equilibrium in the bond market and the previous density function.

Finally, if this interest rate is close enough to the initial value, we find the stationary

equilibrium. We provide the proof of the following lemmas in Appendix A.

Step 1. The Dynamic Programming Problem. In this step, We obtain the HJB equation

for agent j and the first-order conditions. Since we have one state variables in the economy,

the agent’s wealth a, the HJB equation is a PDE of the agent-j’s value function related to

only one state variable.

(a) The HJB Equation. Let Vj(t, a) be the value function at date t of agent type

j ∈ {1, 2}, which depends on his individual wealth a, defined as

Vj(t, a) = sup
{cjt}

Et

[∫ ∞

t
f(cj,s, Vj,s)ds

]
, (15)

The HJB equation for agent j (with constraints) is defined as follows.
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Lemma 2.1. The HJB equation of Vj(t, a) for j = {1, 2} with an initial condition is given

by

0 = max
{c}

{
f(cj , Vj) + V ′

j (a)(yj + ra− c) + λj(V−j(a)− Vj(a))
}
, (16)

where −j represents the other agent type (with the other labor income level). For instance,

if j = 1 (i.e, y = y1), then −j = 2 (i.e., y = y2).

(b) First Order Conditions. The static optimization problem from the HJB equa-

tion (16) is given by

max
{cjt}

{
Ψ
}
, (17)

where Ψ represents the elements inside braces of the HJB equation (16). Then, the

first-order condition is given by

cj :
∂f(cj , Vj)

∂ckt
− V ′

j (a) = 0 −→ ((1− γ)Vj)
1−θ c−δ

j = V ′
j (a), (18)

where θ = (1− δ)/(1− γ).

(c) The Optimal HJB Equation. Considering the optimal control variable (18)

in the HJB equation (16), the operation max is not longer necessary. Then, the optimal

HJB equation for agent type j ∈ {1, 2} is given by

0 = f(cj , Vj) + V ′
j (a) (yj + ra− c) + λj (V−j(a)− Vj(a)) (19)

with

First Order Condition (FOC) : ((1− γ)Vj)
1−θ c−δ

j = V ′
j (a) (20)

Wealth dynamic of agent : dajt = (yjt + rtajt − cjt) dt (21)

Borrowing constraint : ajt ≥ a (22)

Income process : yjt ∈ {y1t, y2t} with λ1, λ2 and y1t < y2t (23)

Step 2. The Kolmogorov Forward Equation. In this step, we find the PDE of the joint

income-wealth density gj(a) for agent type j ∈ {1, 2}. To do so, we start find the change

of the cummulated wealth-income joint distribution function Gj(a, t) over a small period

∆ in a discrete-time framework; that is, (Gj(a, t+∆)−Gj(a, t)) /∆. Then, we take

limit when ∆ tends to zero to find the dynamics of Gj(a, t). Finally, we use the fact

that ∂aGj(a, t) = gj(a, t) and then set up ∂gj(a, t)/∂t = 0 since we are interested in the

stationary density. This last step allows us to find the Kolmogorov Forward Equation,

stated in the following Lemma.

Lemma 2.2. Given the optimal value function from the HJB equation and the policy

functions {cj(a), sj(a)} for j ∈ {1, 2}, the the stationary wealth-income joint density gj(a)

is the solution of the following PDE, called the Kolmogorov Forward Equation.

0 = −∂a[sj(a)gj(a)]− λjgj(a) + λ−jg−j(a), (24)

where ∂aX ≡ ∂X/∂a and optimal saving sj = yj + ra− cj.
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Step 3. The System of PDEs. The model is represented by two PDEs (the HJB and

FK equations) with equilibrium and optimality conditions along with constraints. This

system is given by

HJB Eq. : 0 = f(cj , Vj) + V ′
j (a) (yj + ra− c) + λj (V−j(a)− Vj(a)) (25)

KF Eq. : 0 = ∂a[sj(a)gj(a)]− λjg(a) + λ−jg−j(a) (26)

with

FOC : ((1− γ)Vj)
1−θ c−δ

j = V ′
j (a) (27)

Wealth dynamic of agent : dajt = (yjt + rtajt − cjt) dt (28)

Borrowing constraint : ajt ≥ a (29)

Income process : yjt ∈ {y1t, y2t} with λ1, λ2 and y1t < y2t (30)

Marker clear condition : S(r) ≡
∫ ∞

a
adG1(a) +

∫ ∞

a
adG2(a) = B (31)

Aggregation of densities :

∫ ∞

a
g1(a)da+

∫ ∞

a
g2(a)da = 1 (32)

Normalized aggregator : f(cj , Vj) =
1

1− δ
(1− γ)Vj

[
c1−δ
j [(1− γ)Vj ]

− 1−δ
1−γ − ρ

]
.(33)

where B = 0 and the distribution function Gj(a, t) is related to the density function gj(a, t)

by Gj(a, t) = gj(a, t)da for j ∈ {1, 2}.
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3 Quantitative Analysis

3.1 The Numerical Solution Method

We follow the same numerical procedure to solve a heterogeneous agents model with only

idiosyncratic shock proposed by Achdou et al. (2022). Specifically, we use a bisection

procedure to find the interest rate at the stationary equilibrium. The steps are as follows:

First, We define an initial guess r(0) = 0.03 and iterate to obtain r(n) for each iteration

n = 0, 1, 2, 3, . . . , nmax. Second, given r
(n), we solve the HJB equation (25) using the finite

difference method with the upwind scheme. The result is the optimal consumption cnj (a)

and savings snj (a) for j ∈ 1, 2. Third, given snj (a), we solve the KF equation (26) for gnj (a)

using the finite difference method. Fourth, given gnj (a), we compute the net supply of

bonds S(r(n)), which must be equal to zero (Eq. 31). We update the interest rate based

on the following rule: if S(r(n)) > 0, we decrease the interest rate in the next iteration

(r(n+1) < r(n)), while if S(r(n)) < 0, we increase the interest rate in the next iteration

(r(n+1) > r(n)). The algorithm terminates when r(n+1) and r(n) are almost the same. In

this case, the stationary equilibrium is represented by
(
r(n), V

(n)
1 , V

(n)
2 , gn1 , g

n
2

)
. Appendix

B describes the details of the numerical procedure.

3.2 Parameter Values

We then calibrate the model using the parameter values from heterogeneous-agent liter-

ature (see Table 1). We set up the subjective discount rate ρ equals to 0.05 to obtain a

discount factor equals to 0.9512, standard in this literature (e.g., Chan and Kogan, 2002;

Fernández-Villaverde et al., 2023). We choose the RRA (γ) and EIS (ψ = 1/δ) from the

space of values that allows convergency of the HJB equation and equilibrium. Particu-

larly, we show in the next section that the model has a solution and hence the equilibrium

exists for combinations of the values of γ ∈ [1.5, 8.4] and ψ ∈ [0.2, 0.6]. For the baseline

calibration, We choose γ = 3 and ψ = 0.2.

We closely follow Fernández-Villaverde et al. (2023) in calibrating the intensity of

jumps between states, denoted as λj , and the income levels, denoted as yj . First, states one

and two can be interpreted as representing the unemployment and employment situations,

respectively. Then, the pair (λ1, λ2) represents the transition rates between these two

states. We calculate these parameters considering that the unemployment rate λ2/(λ1+λ2)

is 0.05 and the job finding rate λ1 is 0.986 annually. Moving to the income levels, we

calculate y1 and y2 using two sources. First, we use a normalization condition: 1 =

(λ2/(λ1 + λ2)) y1 + (λ1/(λ1 + λ2)) y2. Second, we assume that y1 = 71%y2.

3.3 Convergence and Equilibrium

Based on our baseline calibration, shown in Table 1, we proceed to evaluate the cases in

which the model has an equilibrium. Specifically, we inspect the values of γ (RRA) and

ψ (EIS) for which the HJB equation converges and the model has an equilibrium interest

rate. To do so, we create a grid of values of γ ̸= 1 and ψ ̸= 1 between 0.1 and 10, increasing

10



Table 1: Baseline Parameter Values

Parameters Symbol Value

Subjective discount rate ρ 0.05

Relative risk aversion (RRA) γ 3

Elasticity of intertemporal substitution (EIS) 1/δ 0.2

Intensity to jump between states {λ1, λ2} {0.986, 0.052}
Borrowing limit a -0.15

Income level {y1, y2} {0.71, 1.015}

by 0.1. For instance, γ takes values from {0.1, 0.2, 0.3, · · · , 0.9, 1.1, · · · 9.9, 10}. We then

solve the model for each pair combination (γ, ψ), which are 9801 in total. We restrict

our search for an equilibrium interest rate between one and four percent, since a stability

condition suggests that r < ρ = 5%.

We first evaluate in what space of pairs (γ, ψ) the HJB converges. Our simulation

shows that the model has a HJB equation convergence for 12.5% of the total pairs (γ, ψ),

as shown on the left graph of Figure 2. Most of these values can be split into two subsets:

(γ > 1, ψ < 1) and (γ < 1, ψ > 1). Few pairs of (γ > 1, ψ > 1) generate convergence in

the HJB equation.

Second, our simulations also show that for 203 pairs out of a total of 9801, the model

has a solution, that is, convergence of the HJB equation and equilibrium interest rate

(see the right graph of Figure 2). This result suggests that 2.1% of the total pairs (γ, ψ)

evaluated generate equilibrium. As we can observe, the set of values of (γ, ψ) ensuring

equilibrium constitutes a subset of the space where (γ, ψ) guarantees convergence of the

HJB equation. Specifically, the model equilibrium is assured by some combinations of the

values of γ ∈ [1.5, 8.4] and ψ ∈ [0.2, 0.6].

This analysis has an important implication for heterogeneous-agent models: the equi-

librium requires that γ > 1 and ψ < 1. This requirement is robust even when we change the

calibration, as shown in Appendix C. In our robustness exercise, we set λ1 = λ2 = 0.6931

to get a probability of 30.12% to keep the agent in the same state and, based on Achdou

et al. (2022), we consider labor income as y2 = 2y1 = 0.2. This exercise confirms that

the equilibrium typically requires γ > 1 and ψ < 1, as previously observed in our initial

analysis.

We then explore the behavior of the interest rate in the space of (γ, ψ), where the

equilibrium exists. The left graph of Figure 2 plots the equilibrium interest rate for each

pair of (γ, ψ), while the right graph of Figure 2 shows the equilibrium interest rate versus

γ (RRA) for each value of ψ (EIS). These graphs provide insights into the relationship

between the interest rate, RRA, and EIS. First, the interest rate decreases monotonically

with RRA, regardless of the level of EIS. Second, the interest rate increases with EIS.

Third, the marginal effect of EIS on interest rates decreases across different values of EIS.

For instance, fixing γ = 3, increasing ψ from 0.2 to 0.3 has a larger effect on the interest

rate than increasing it from 0.4 to 0.5.
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Figure 1: Model Convergence and Equilibrium.

Figure 2: Interest Rate and its Relationship with RRA and EIS.

Discussion about ψ < 1. It might seem surprising that Huggett’s model with recursive

preferences does not yield equilibria for values of the Elasticity of Intertemporal Substitu-

tion (EIS) greater than one (based on our calibration and model assumptions), particularly

considering the success of long-run risk models in explaining asset pricing puzzles, often

assuming an EIS greater than one (Bansal and Yaron, 2004; Pohl et al., 2021). However,

the literature lacks consensus on the precise value of ψ (see Thimme, 2017, and refer-

ences therein), with estimates of ψ < 1 emerging across various contexts such as multiple

consumption goods or limited participation in stock markets. Since our study does not

aim to elucidate financial market dynamics, our findings align with this latter strand of

literature.

Another crucial consideration is that recursive preferences are also intertwined with

attitudes towards uncertainty resolution. Our convergence results suggest the existence of

equilibrium for both types of preferences: early resolution (γ > 1/ψ) and late resolution
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(γ < 1/ψ) of uncertainty, stemming from labor income risk. This flexibility enables the

model to remain consistent with evidence favoring a preference for early resolution of

uncertainty (Epstein et al., 2014; Ai et al., 2023).

3.4 Optimal Consumption and Savings

Having established the parameter space (γ, ψ) wherein the model yields a solution, we

now delve into examining the policy functions. Figure 3 depicts the optimal consumption

and saving behaviors for each agent type j ∈ {1, 2} under both the baseline calibration

and a variation in γ (or ψ), while holding the other parameter constant.

The upper panel of Figure 3 shows the consumption and saving behaviors for the

baseline calibration (γ = 3 and ψ = 0.2), contrasting them with the outcomes of adjusting

γ from 3 to 5 while keeping ψ constant at 0.2. Interestingly, movement in the Relative

Risk Aversion (RRA) parameter (γ) has marginal effects on both consumption and saving

rules. This contrasts strongly with the effect of the Elasticity of Intertemporal Substitution

(EIS) parameter (ψ), depicted in the bottom panel of Figure 3. Specifically, this panel

reveals that when EIS (ψ) increases from 0.2 to 0.5, consumption and saving respond more

strongly than to changes in RRA (γ). Moreover, the low-income level agent experiences

a greater increase in his consumption rule (c1) compared to the high-income level agent

(c2).

Why does it explain these results? The equilibrium interest rate plays a crucial role.

Initially set at 1.3% under the baseline calibration, it experiences a minor decrease to

1.01% when γ rises from 3 to 5. However, when ψ escalates from 0.2 to 0.5, the interest

rate sees a significant surge, soaring to 3.9%. Consequently, changes in the EIS have

a more pronounced impact on the interest rate than alterations in RRA, and hence on

optimal consumption and saving.

3.5 Wealth and Consumption Distributions

We then inspect the stationary wealth and consumption distributions generated by the

model and the distributional effects of changes of γ and ψ. Figure 4 shows the effects of

changing γ on wealth and consumption distribution for both agent types (low and high

income), while Figure 5 shows the effects of changing ψ on the same variables for both

agents. We explore first the stationary distributions.

These figures reveal the following regarding wealth distribution. First, there is a con-

centration of low-income agents at the borrowing limit (a = −0.15) in their wealth distri-

bution. Second, it seems that most low-income agents are borrowers (a < 0). Third, upon

inspecting high-income agents, their wealth distribution is negatively skewed, suggesting

that on average these agents are net lenders (a > 0).

Exploring the consumption distribution, these figures suggest the following. First,

there is also a concentration of low-income agents at the minimum level of consumption,

which is related to the concentration at the borrowing limit in wealth distribution. Second,

the consumption of high-income agents is higher than that of low-income agents for all

values of wealth.
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Figure 3: Optimal Consumption and Saving. This figure illustrates the optimal policy

functions for consumption and saving for both low-income (y1) and high-income (y2) type

agents. The baseline calibration assumes γ = 3 and ψ = 0.2. The graphs in the upper

panel depict the policy functions for consumption and saving when γ increases from 3 to

5 while holding ψ constant at 0.2. Conversely, the graphs in the lower panel illustrate

the policy functions for consumption and saving when ψ increases from 0.2 to 0.5 while

maintaining γ at 3.

Having explored the stationary distributions generated by the model, we move on to

analyze the effects of γ and ψ. Surprisingly, changes in γ (Figure 4) have marginal affects

on the wealth and consumption distribution of both agent types. In contrast, variations in

ψ have non-trivial distributional effects. Specifically, an increase in ψ from 0.2 to 0.5 shifts

the wealth distribution of the high-income agent to the right, suggesting a higher median

but higher dispersion. A similar effect is observed in their consumption distribution,

although it is less pronounced.

These results highlight the different effects of RRA and EIS on the optimal decisions

of agents and on their stationary distributions. Therefore, it is of first-order importance

to consider them independently in a heterogeneous-agent model. This can be achieved

when preferences are modeled recursively, as in Epstein-Zin preferences. However, using

constant relative risk aversion (CRRA) preferences does not seem to accurately capture

the distributional effects of RRA and EIS.
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Figure 4: Wealth and Consumption Distribution (∆γ). This figure shows the dis-

tributional effects of an increase of RRA (γ) from 3 to 5, for both agent types.
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Figure 5: Wealth and Consumption Distribution (∆ψ). This figure shows the

distributional effects of an increase of EIS (ψ) from 0.2 to 0.5, for both agent types.
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4 Distributional Effects of RRA and EIS

In this section, we delve deeper into the distributional effects of RRA and EIS, building

upon the graphical analysis presented in the previous section. To achieve this, we employ

a comprehensive approach by characterizing the wealth and consumption distributions

through three key statistics: mean, standard deviation, and percentiles. Our objective

is to assess how changes in RRA and EIS impact these statistical measures, providing

insights into the role of these parameters in shaping the stationary distribution within the

model.

4.1 Wealth Distribution

We start by inspecting the effects of RRA (γ) and EIS (ψ) on the aggregate wealth

distribution (see Table 2). First, independently of the level of γ and ψ, the mean of wealth

is zero, suggesting that the economy is characterized by borrowers (agents with a < 0)

and lenders (agents with a > 0). Second, an increase of ψ generates higher dispersion

(standard deviation), which can be interpreted as more inequality. However, changes in

γ have marginal or non-effects on dispersion. This is mainly explained from the different

effects of γ and ψ on the interest rate.

Assessing the effects on wealth percentiles, we observe the following. A change in

ψ decreases the first three percentiles (1%, 5%, and 25%), all of which are negative.

Consequently, an increase in ψ elevates the level of debt in the economy. Simultaneously,

an increase in ψ raises the last three percentiles (75%, 95%, and 99%)–which are positive,

indicating that wealthy individuals become wealthier. Therefore, ψ has significant effects

on wealth distribution, increasing its inequality, while the effects of γ are negligible.

Table 2: Wealth Distribution (total population)

ψ Mean Std. dev. 1% 5% 25% 50% 75% 95% 99%

(A) γ = 3

0.2 0.000 0.044 -0.148 -0.105 -0.013 0.021 0.029 0.034 0.035

0.5 0.000 0.049 -0.149 -0.113 -0.021 0.021 0.037 0.044 0.045

(B) γ = 5

0.2 0.000 0.043 -0.148 -0.103 -0.013 0.020 0.029 0.034 0.035

0.5 0.000 0.049 -0.149 -0.112 -0.020 0.020 0.036 0.043 0.045

We then explore the effects of RRA and EIS on distributions by agent type (see Table

3). First, regardless of the level of γ and ψ, the wealth mean of low-income agents is

negative, while the same statistic is positive for high-income agents. This observation

suggests that low-income agents are the net borrowers and high-income agents are the

net lenders in this economy. Second, based on percentiles, 75% of low-income agents are

borrowers, contrasting with the fact that only 25% of high-income agents are borrowers.

Similarly, as observed at the aggregate level, variations in γ have no effects or, at

best, marginal effects on agent-type wealth distribution. However, this is not the case
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for changes in ψ. First, an increase in ψ leads to increased dispersion in the wealth

distribution of both agent types, with strong effects on high-income agents. Second, the

more significant effects of ψ on the wealth distribution of low-income agents are observed

in the last four percentiles (50%, 75%, 95%, and 99%). Specifically, percentiles 50% and

75% become more negative, indicating that an increase in ψ elevates the debt level of

these agents. Additionally, percentiles 95% and 98% become more positive, suggesting

that low-income agents with high wealth become even wealthier. Third, in contrast with

low-income agents, changes in ψ affect all wealth percentiles. Consequently, the 25% of

these agents are now more leveraged, while the last four percentiles indicate that agents

with high wealth become wealthier.

These results highlight that changes in ψ not only affect aggregate distributions but

also have distinct impacts on agent-type wealth distribution. These heterogeneous effects

of ψ appear to be economically significant and should be carefully considered in any

heterogeneous-agent model.

Table 3: Wealth Distribution (agent types)

ψ Mean Std. dev. 1% 5% 25% 50% 75% 95% 99%

(1) Low-income agent

(A) γ = 3

0.2 -0.088 0.057 -0.150 -0.150 -0.146 -0.099 -0.040 0.014 0.028

0.5 -0.090 0.059 -0.150 -0.150 -0.147 -0.106 -0.042 0.018 0.036

(B) γ = 5

0.2 -0.088 0.057 -0.150 -0.150 -0.145 -0.098 -0.039 0.014 0.028

0.5 -0.090 0.059 -0.150 -0.150 -0.146 -0.105 -0.042 0.018 0.035

(2) High-income agent

(A) γ = 3

0.2 0.005 0.038 -0.129 -0.083 -0.006 0.022 0.029 0.034 0.035

0.5 0.005 0.044 -0.134 -0.093 -0.014 0.023 0.037 0.044 0.045

(B) γ = 5

0.2 0.005 0.037 -0.128 -0.082 -0.006 0.021 0.029 0.034 0.035

0.5 0.005 0.043 -0.134 -0.092 -0.013 0.023 0.036 0.043 0.045

4.2 Consumption Distribution

After examining the impacts of RRA and EIS on wealth distribution, we turn our attention

to their effects on consumption distribution, beginning with an aggregate-level analysis

(see Table 4). A key finding is that, at the aggregate level, changes in γ do not alter the

standard deviation, whereas changes in ψ do. Specifically, an increase in ψ from 0.2 to 0.5

results in higher consumption dispersion.

This larger dispersion can be attributed to two factors: first, a reduction in consump-

tion at the first percentile, primarily driven by a high concentration of low-income agents
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constrained by borrowing limitations (a ≥ a ≡ −0.15), who consequently experience el-

evated equilibrium interest rates leading to reduced consumption. Second, an increase

in consumption at the higher percentiles (75%, 95%, and 99%), due to these agents be-

ing net lenders, profiting from the high interest rates and subsequently boosting their

consumption.

Table 4: Consumption Distribution (total population)

ψ Mean Std. dev. 1% 5% 25% 50% 75% 95% 99%

(A) γ = 3

0.2 1.000 0.0467 0.735 0.909 1.007 1.013 1.015 1.016 1.016

0.5 1.000 0.0473 0.727 0.921 1.006 1.013 1.016 1.017 1.017

(B) γ = 5

0.2 1.000 0.0467 0.736 0.906 1.007 1.014 1.015 1.015 1.015

0.5 1.000 0.0473 0.728 0.919 1.006 1.013 1.016 1.017 1.017

What are the effects of RRA and EIS on consumption distribution by agent type?

The results presented in Table 5 address this question. Firstly, it’s important to note that

regardless of the level of γ and ψ, the consumption dispersion of low-income agents remains

lower than that of high-income agents. Secondly, an increase in ψ significantly boosts

consumption dispersion for low-income agents, while changes in γ have only marginal

effects on it. Thirdly, alterations in γ and ψ don’t impact the consumption dispersion of

high-income agents, although changes in ψ slightly shift their distribution to the right

Table 5: Consumption Distribution (agent types)

ψ Mean Std. dev. 1% 5% 25% 50% 75% 95% 99%

(1) Low-income agent

(A) γ = 3

0.2 0.810 0.066 0.718 0.718 0.746 0.823 0.870 0.899 0.906

0.5 0.810 0.073 0.714 0.714 0.739 0.824 0.877 0.910 0.918

(B) γ = 5

0.2 0.810 0.065 0.718 0.718 0.748 0.823 0.868 0.897 0.904

0.5 0.810 0.072 0.714 0.714 0.740 0.823 0.875 0.908 0.916

(2) High-income agent

(A) γ = 3

0.2 1.010 0.008 0.979 0.992 1.009 1.014 1.015 1.016 1.016

0.5 1.010 0.008 0.981 0.991 1.007 1.014 1.016 1.017 1.017

(B) γ = 5

0.2 1.010 0.008 0.979 0.992 1.009 1.014 1.015 1.016 1.016

0.5 1.010 0.008 0.981 0.991 1.008 1.014 1.016 1.017 1.017
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5 Leverage

We devote this section to exploring how leverage is determined in the economy and how

RRA and EIS affect it. Our analysis is confined to the set of values of (γ, ψ) for which the

model has a solution (see Subsection 3.3).

Figure 6 depicts the relationship between leverage ratio and RRA, EIS, and interest

rate. An interesting theoretical result emerges: given ψ, the leverage ratio decreases with

RRA. This negative slope of the leverage ratio with respect to RRA is observable in the

middle graph of Figure 6. What explains this slope? When agents exhibit greater risk

aversion (an increase in γ), they seek to hedge against labor income risk to smooth con-

sumption between different states of nature (low and high income states). Consequently,

they demand more bonds, driving up bond prices and thereby reducing the interest rate.

With the new, lower equilibrium interest rate, agents are discouraged from investing in

bonds, leading to a reduction in total leverage in the economy.

Another important finding is that, given a specific RRA value (for example, γ = 4),

an increase in EIS (ψ) leads to a monotonically increasing leverage ratio. This trend

is primarily driven by the sensitivity of the interest rate to changes in ψ. It may seem

surprising at first glance that the leverage ratio exhibits a positive slope with respect to the

interest rate. However, this economic phenomenon can be attributed to the dominance

of the income effect over the substitution effect, given that EIS is less than one. As a

result, the partial derivative of consumption with respect to the interest rate (∂cj(a)/∂r)

is positive (Achdou et al., 2022). Therefore, an increase in ψ leads to a rise in r, which

in turn increases consumption while reducing saving, thereby resulting in an increase in

leverage.
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Figure 6: Leverage Ratio. This figure depicts the relationship between the leverage ratio

and the Elasticity of Intertemporal Substitution (EIS), Relative Risk Aversion (RRA), and

interest rate. The leverage ratio is calculated as the aggregate leverage over total income

at the stationary equilibrium. Aggregate leverage is defined as the sum of (g1 + g2)a for

a < 0, where gj for j ∈ {1, 2} represent the joint density of income yj and wealth a.

Total income is calculated as the sum of (g1y1 + g2y2) for all values of a within the range

[−0.15, 5], where y1 and y2 represent the low and high income, respectively.
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6 Conclusions

We extend the Huggett model to incorporate Epstein and Zin (1989) preferences in con-

tinuous time and analyze the roles of Relative Risk Aversion (RRA) and Elasticity of

Intertemporal Substitution (EIS) in determining equilibrium interest rates, consumption-

saving decisions, stationary distributions, and leverage.

Our findings suggest that variations in the EIS have stronger effects on equilibrium

outcomes than variations in RRA. Furthermore, we demonstrate that equilibrium exists

only within a subset of values for RRA and EIS, namely when RRA > 1 and EIS <

1. Therefore, gaining an understanding of structural parameters in heterogeneous-agent

models requires a quantitative distinction between RRA and EIS.

These results carry significant implications for macroeconomic and asset pricing mod-

els. Firstly, long-run risk models typically assume EIS > 1. However, our findings raise

an important question: Can our model, enhanced with aggregate shocks, effectively ad-

dress asset return puzzles when EIS is less than one? This presents a promising avenue

for future research. Secondly, understanding the distributional effects of state variables or

financial market variables necessitates distinguishing between both parameters, RRA and

EIS, as they exert differing impacts at both the aggregate and agent-level distributions.

Overall, our findings underscore the importance of quantitatively distinguishing be-

tween RRA and EIS in heterogeneous-agent models.
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Appendix

A Lemma Proofs

A.1 Proof of Lemma 2.1.

The strategy: First, we start with the optimization problem in discrete time with length

period ∆. Second, we take the limit of the HJB equation with respect to ∆ → 0. This

last step allows us to obtain the HJB equation in continuous time.

(a) Discrete-time problem. We first set a length period equals to ∆. Second,

the agent with income yj in period t keeps their income in period t+∆ with probability

Pj(∆) = e−λj∆ and switch to state y−j with probability 1 − Pj(∆). Then, the Bellman

equation for this problem is given by

Vj(a) = max
{ct}

f(cj , Vj)∆ + β(∆) [Pj(∆)Vj(at+∆) + (1− Pj(∆))V−j(at+∆)]︸ ︷︷ ︸
E[Vj(at+∆)]

 (34)

subject to

at+∆ = (yjt + rat − ct)∆ + at, (35)

at+∆ ≥ a, (36)

for j ∈ {1, 2}.

Importantly, the expected value function of agent j (E [Vj(at+∆)]) considers the possi-

bility to have the same income yj and to jump to the other income y−j in the next period

t+∆:

E[Vj(at+∆)] = Pj(∆)Vj(at+∆) + (1− Pj(∆))V−j(at+∆)

(b) Taking limit when ∆ → 0. We then take limits on the conditional probabilities,

and then on the HJB equation when the time length tends to zero (∆ → 0).

Pj(∆) = e−λj∆ ⇒ Pj(∆) ≈ 1− λj∆ (37)

In the HJB equation (34)

Vj(at) = max
{c}

{f(cj , Vj)∆ + [(1− λj∆)Vj(at+∆) + λj∆V−j(at+∆)]}

0 = max
{c}

{f(cj , Vj))∆ + [(1− λj∆)Vj(at+∆) + λj∆V−j(at+∆)−Vj(at)]}

0 = max
{c}

{f(cj , Vj)∆ + [Vj(at+∆)−Vj(at) + λj∆[V−j(at+∆)− Vj(at+∆)]]} (38)

Dividing the Eq. (38) by ∆, it turns out
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0 = max
{c}

{
f(cj , Vj)∆

∆
+

[
Vj(at+∆)− Vj(at)

∆
+ λj(V−j(at+∆)− Vj(at+∆))

]}
Taking limit when ∆ → 0

0 = max
{c}

{
f(cj , Vj) + lim

∆→0

[
Vj(at+∆)− Vj(at)

∆

]
+ λj(V−j(at)− Vj(at))

}
(39)

It is worth noting that the value function depends on the state variable a and indirectly

on the time. Then, the derivative of the value function is respect to its variable a and not

respect to the time t. The term in “lim” operator, in the Eq. (39), has a denominator ∆:

a change in time. We need to change this denominator to have “change in a.” With this

goal in mind, we can use the expression for at+∆ from the Eq. (35) to rewrite the limit

term, as follows

lim
∆→0

[
Vj(at+∆)− Vj(at)

∆

]
= lim

∆→0

[
Vj(at +∆(yjt + rtat − ct))− Vj(at)

∆

]
= lim

∆→0

[
Vj(at +∆(yjt + rtat − ct))− Vj(at)

∆(yjt + rtat + ct)

∆(yjt + rtat + ct)

∆

]
= lim

x→0

[
Vj(at + x)− Vj(at)

x

(yjt + rtat + ct)

1

]
= V ′

j (at)(yjt + rtat + ct), (40)

where x ≜ ∆(yjt + rtat − ct). Then, ∆ → 0 is equivalent to x → 0. Considering Eq. (40)

into Eq. (39), the HJB equation becomes

0 = max
{c}

{
f(cj , Vj) + V ′

j (a)(yj + rta− c) + λj(V−j(a)− Vj(a))
}

(41)

with the law of movement of the state variable (agent’s saving) (42) and the borrowing

constraint (43), which in continuous-time are defied as

at+∆ = ∆(yjt + rtat − ct) + at
at+∆ − at

∆
= yjt + rtat − ct

lim
∆→0

[
at+∆ − at

∆

]
≡ ȧt = yjt + rtat − ct (42)

at+∆ ≥ a → lim
∆→0

: at ≥ a (43)

Remark. We know that the wealth a ∈ [a,∞+[. Then, in the interior of the state

space, we have at > a. Now, we define ∆ arbitrarily small. Therefore, at > a implies

at+∆ > a.

lim
∆→0

at+∆ = at and we know at > a (44)

Then, if at > a⇒ for ∆ small⇒ at+∆ > a. This fact implies that the borrowing constraint

at > a never binds in the interior of the state space.
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A.2 Proof of Lemma 2.2.

The next step is to derive a law of movement of the distribution of the state variable

a. We follow the same strategy that we applied to the HJB equation. First, we start

with a discrete-time approach assuming a length of period ∆ small. Then, we move to a

continuous-time environment by taking the limit when ∆ tends to zero.

A.2.1 Preliminary

In discrete-time economy, we define the following. First, Gj(a, t) represents the fraction

of population with income yj and wealth below a level in period t:

Gj(a, t) = Prob(ãt ≤ a, ỹt = yj), (45)

where ãt and ỹt represent agent’s wealth and income as a random variables, while a

and yj represent a level of these variables. Second, we evaluate Gj(a, t) at the borrowing

limit a, as follows.

G1(a, t) +G2(a, t) = 0, ∀t, (46)

where,

• G1(a, t) is the fraction of people with income y1 and wealth lower or equals to “a”

• G2(a, t) is the fraction of people with income y2 and wealth lower or equals to “a”

Then,

G1(a, t) = G2(a, t) = 0 (47)

Finally, the total population is normalized to one as follows.

lim
a→∞+

[G1(a, t) +G2(a, t)] = 1, (48)

where,

• G1(a, t): The function of people with income y1, “lima→∞G1(a, t)”

• G2(a, t): The function of people with income y2, “lima→∞G2(a, t)”

A.2.2 Law of motion for Gj(a, t) in discrete time

We want to derive a law of motion for Gj ; i.e., we are interested in how Gj changes over

time. Specifically, we want to calculate the following:

∂Gj(a, t)

∂t
= lim

∆→0

[
Gj(a, t+∆)−Gj(a, t)

∆

]
, j ∈ {1, 2} (49)

To define the Eq. (49), we need to find an expression for Gj(a, t+∆). Therefore, our

first goal is to find that expression. To do so, we recall the definition of Gj(a, t+∆):
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Gj(a, t+∆) = Prob[ãt+∆ ≤ a, ỹt+∆ = yj ]. (50)

To find an expression of Eq. (50), we proceed in two steps. First, we compute

Prob[ãt+∆ ≤ a] without considering income change between t and t + ∆. Second, we

consider the change in income. We then use the Gj(a, t + ∆) obtained in the previous

steps to calculate ∂Gj(a, t)/∂t (the Eq. 49), which is the law of motion for Gj .

Additionally, to find the law of motion for Gj , we need to answer the following question:

“if a type j individual has wealth at+∆ at time t+∆, then what level of wealth ãt did he

have at period t?” We know the law of movement of the state variable ã as a definition of

saving:

ãt+∆ = ãt +∆sj(ãt) (51)

ãt+∆ = ãt +∆sj(ãt+∆) (52)

We use the equation (52) because it is convenient. Importantly, both equation (51 and

52) are the same; the difference between them is that the former looks forward in time

and the latter looks backward. Since the HJB equation is forward looking, we will use Eq.

(52).

ãt = ãt+∆ −∆sj(ãt+∆) (53)

Intuition: If sj(ãt+∆) < 0 (this means the agent dissaves), his past wealth ãt must

have been larger than his current wealth ãt+∆.

We now calculate Prob[ãt+∆ ≤ a] in two steps.

Step 1 (labor income does not change). We analyze the wealth in t + ∆ without

considering the change in income. Fig. 7 illustrates the movement of the fraction of people

from t to t+∆ that have wealth below a in t+∆. Specifically, under the assumption of

dissaving, sj ≤ 0, Fig. 7 shows that the probability of wealth in t+∆ to be below than a

(i.e., Prob[ãt+∆ ≤ a]) comes from two sources:

• First, the fraction of population X that already had wealth below a in t. Since they

dissaves, their wealth in t+∆ would be lower than a.

X = Prob[ãt ≤ a] (54)

• Second, the fraction of population Y that had wealth higher than a in t, but since

they dissaved in t, their wealth in t+∆ would be below than a for some threshold

a∗t .

Y = Prob[a ≤ ãt ≤ a∗t ] (55)

We need to calculate the level of wealth in t that allows us to get a in t+∆: ãt+∆ = a.

Then, using the Eq. (53), we can obtain a∗t :
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Figure 7: Transition of wealth

ãt = ãt+∆ −∆sj(ãt+∆)

a∗t = a−∆sj(a) (56)

Introducing a∗t from Eq. (56) into Eq. (55):

Y = Prob[a ≤ ãt ≤ a−∆sj(a)] (57)

With these two sources, we now can calculate Prob[ãt+∆ ≤ a]:

Prob[ãt+∆ ≤ a] = X + Y

= Prob[ãt ≤ a] + Prob[a ≤ ãt ≤ a−∆sj(a)]

Prob[ãt+∆ ≤ a] = Prob[ãt ≤ a−∆sj(a)] (58)

Recall, this probability (Eq. 58) does not consider the change in income between t and

t+∆. The next step is to consider the transition of income.

Step 2 (labor income changes). Now, we consider the possibility that some people

from t with income yj and income y−j could have income yj in period t + ∆. Fig. 8

illustrates the changes in income and their probabilities. In particular, to calculate the

probability of the wealth in t + ∆ to be below a given that the income in that period is

y1, we need to take into account two sources:

• First, the fraction of the population that had income y1 in t and have the same

income in t+∆. The probability to have the same y1 income is (1− λ1∆):

Pr[yt+∆ = y1|yt = y1] = 1− λ1∆
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Figure 8: Transition of wealth with income

• Second, the fraction of the population that had income y2 and now, in t +∆, they

have income y1. The probability to pass from income y2 in t to y1 in t+∆ is (λ2∆):

Pr[yt+∆ = y1|yt = y2] = λ2∆

Taking into account these two sources, the probability of the wealth to be below a in

t+∆ for income y1 is:

Prob[ãt+∆ ≤ a, ỹt+∆ = y1] = Prob[yt+∆ = y1|yt = y1]Prob[ãt ≤ a−∆S1(a), ỹt = y1]

+ Prob[yt+∆ = y1|yt = y2]Prob[ãt ≤ a−∆S2(a), ỹt = y2]

Prob[ãt+∆ ≤ a, ỹt+∆ = y1] = (1− λ1∆)G1(a−∆S1(a), t) + (λ2∆)G2(a−∆S2(a), t)

In general terms, for any income yj :

Prob[ãt+∆ ≤ a, ỹt+∆ = yj︸ ︷︷ ︸
Gj(a,t+∆)

] = (1−λj∆)Gj(a−∆sj(a), t)+(λ−j∆)G−j(a−∆s−j(a), t) (59)

Calculating the law of motion of Gj(a, t). Since we have an expression of Gj(a, t+∆)

(Eq. 59), we can calculate ∂Gj(a, t)/∂t (the law of motion for Gj stated in Eq. 49). to

do so, we start introducing −Gj(a, t) in both side of Eq. (59), as follows.

Gj(a, t+∆)−Gj(a, t) = (1− λj∆)Gj(a−∆sj(a), t)−Gj(a, t) + (λ−j∆)G−j(a−∆s−j(a), t)

Gj(a, t+∆)−Gj(a, t) = Gj(a−∆sj(a), t)−Gj(a, t)

− (λj∆)Gj(a−∆sj(a), t) + (λ−j∆)G−j(a−∆s−j(a), t) (60)
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Dividing Eq. (60) by ∆:

Gj(a, t+∆)−Gj(a, t)

∆
=

Gj(a−∆sj(a), t)−Gj(a, t)

∆
(61)

−
[
(λj∆)Gj(a−∆sj(a), t)− (λ−j∆)G−j(a−∆s−j(a), t)

∆

]
∆ in the last term is ruled out from the numerator and denominator. As a result, Eq.

(61) turns out:

Gj(a, t+∆)−Gj(a, t)

∆
=

Gj(a−∆sj(a), t)−Gj(a, t)

∆
(62)

− (λj)Gj(a−∆sj(a), t) + (λ−j)G−j(a−∆s−j(a), t)

To simplify the algebra, we express the Eq. (62) in three terms:

A = B + C, (63)

where,

A =
Gj(a, t+∆)−Gj(a, t)

∆

B =
Gj(a−∆sj(a), t)−Gj(a, t)

∆
C = −(λj)Gj(a−∆sj(a), t) + (λ−j)G−j(a−∆s−j(a), t)

A.2.3 Law of motion for Gj(a, t) in continuous time

Next, we take lim∆→0 to the Eq. (63).

lim
∆→0

A = lim
∆→0

B + lim
∆→0

C

First term:

lim
∆→0

A = lim
∆→0

[
Gj(a, t+∆)−Gj(a, t)

∆

]
= ∂tGj(a, t)

Second term:

lim
∆→0

B = lim
∆→0

[
Gj(a−∆sj(a), t)−Gj(a, t)

∆

]
= lim

∆→0

{[
Gj(a−∆sj(a), t)−Gj(a, t)

−∆sj(a)

](
−∆sj(a)

∆

)}
= lim

∆→0

{[
Gj(a−∆sj(a), t)−Gj(a, t)

−∆sj(a)

]
(−sj(a))

}
= lim

∆→0

{[
Gj(a−∆sj(a), t)−Gj(a, t)

−∆sj(a)

]}
(−sj(a))

= ∂aGj(a, t)(−sj(a))
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Third term:

lim
∆→0

C = lim
∆→0

[−(λj)Gj(a−∆sj(a), t) + (λ−j)G−j(a−∆s−j(a), t)]

= −(λj) lim
∆→0

[Gj(a−∆sj(a), t)] + (λ−j) lim
∆→0

[G−j(a−∆s−j(a), t)]

= −(λj)[Gj(a, t)] + (λ−j)[G−j(a, t)] (64)

Therefore, using the limit of A, B, and C, the Eq. (63) turns out:

∂tGj(a, t) = −sj(a)[∂aGj(a, t)]− λjGj(a, t) + λ−jG−j(a, t) (65)

We proceed with two more steps. First, we know a relationship between the CDF

Gj(a, t) and the density function gj(a, t):

∂aGj(a, t) = gj(a, t)

Using this relationship in the Eq. (65):

∂tGj(a, t) = −sj(a)gj(a, t)− λjGj(a, t) + λ−jG−j(a, t) (66)

Second, we derive the Eq. (66) with respect to “a”:

∂t ∂aGj(a, t)︸ ︷︷ ︸
gj(a,t)

= −∂a[sj(a)gj(a, t)]− λjgj(a, t) + λ−jg−j(a, t)

∂tgj(a, t) = −∂a[sj(a)gj(a, t)]− λjgj(a, t) + λ−jg−j(a, t) (67)

0 = −∂a[sj(a)gj(a)]− λjgj(a) + λ−jg−j(a) (68)

The expression (67) is the Kolmogorov Forward equation over time for agent j. This

partial differential equation captures the movement of the distribution gj(a, t) over time.

To compute the stationary distribution, gj(a, t) keeps constant over time. We can obtain

this stationary distribution considering ∂tgj(a, t) = 0, which is Eq. (68).
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B The Numerical Solution Method

In this appendix, I provide details of the solution method.

B.1 The Mathematical Model: The HJB Equation

The mathematical model is represented by a system of PDEs formed by the PDE of the

value function Vj for j ∈ {1, 2}. The PDE equation for agent j (Eq. 25) is given by

0 = f(cj , Vj) + V ′
j (a) (yj + ra− cj) + λj (V−j(a)− Vj(a)) . (69)

Considering the full expression of f(cj , Vj), from Eq. (33), into Eq. (69), it becomes

0 =
Vj
θ

[
c1−δ
j [(1− γ)Vj ]

−θ − ρ
]
+ V ′

j (a) (yj + ra− cj) + λj (V−j(a)− Vj(a)) , (70)

Since θ ≜ (1− δ)/(1− γ) could be positive or negative, it should be consider into the

finite difference approximation of the first derivative. To do so, we multiply the Equation

(70) by θ to consider the effect of its sign on the finite difference method. Note that θ

affects the coefficient of V ′
j (a), thereby influencing the decision on whether to use forward

or backward difference approximation. After multiplying Equation (70) by θ, it becomes:

0 = Vj

[
c1−δ
j [(1− γ)Vj ]

−θ − ρ
]
+ V ′

j (a)θ (yj + ra− cj) + λjθ (V−j(a)− Vj(a)) . (71)

This PDE is accompanied by the FOC, and the dynamics of the state variable (wealth):

((1− γ)Vj)
1−θ c−δ

j = V ′
j (a) (72)

da = (yj + ra− cj) dt (73)

Since savings sj is defined as sj = da/dt, Eq. (73) can be expressed as

sj = yj + ra− cj

We use this expression instead of (73).

B.2 State Space and PDE Discretization

We use a structured grid for the state space–an equispaced wealth a grid. Then, I evaluate

each PDE at every point of the grid, resulting in the discretized PDEs system for j ∈ {1, 2},
which is given by

V n+1
i,j − V n

i,j

∆
= Vi,j

[
c1−δ
i,j [(1− γ)Vi,j ]

−θ − ρ
]
+ V ′

i,jθ (yj + rai − ci,j) + λjθ (Vi,−j − Vi,j) ,

(74)
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in which we add
(
V n+1
i,j − V n

i,j

)
/∆ in the left-side of Eq. (74) to consider the value

function iteration in the following steps. This discretized PDE is accompanied by

ci,j =
(
V ′
i,j ((1− γ)Vi,j)

θ−1
)−1/δ

(75)

si,j = yj + rai − ci,j (76)

where V ′
i,j is either the forward or the backward difference approximation when the

state variable a takes the value of ai for i = 1, . . . , I + 1.

B.3 Finite Difference

Since the PDE of Vj (Eq. 74) for agent type j ∈ {1, 2} contains the first derivative of Vj ,

we define the forward and backward difference approximation of the first derivative of Vj
as follows.

V ′
i,j ≈ Vi+1,j − Vi,j

∆a
≡ (Vij,F )

′ : Forward difference approximation (77)

V ′
i,j ≈ Vi,j − Vi−1,j

∆a
≡ (Vij,B)

′ : Backward difference approximation (78)

B.4 Upwind Scheme

The next step is to define when forward or backward approximation should be used. The

criterion is provided by the Upwind scheme. I first define the coefficient of V ′
i,j as

ãij = θ (yj + rai − ci,j) ≡ θsi,j , θ ̸= 0 (79)

The upwind scheme suggests the following rule:

• Use forward approximation if the coefficient associated to V ′
i,j in the right side of

the HJB equation is positive.

• Use backward approximation if the coefficient associated to V ′
i,j in the right side of

the HJB equation is negative.

Therefore, this rule is given by

ãij > 0 −→ V ′
i,j ≈ (Vij,F )

′, ãij = ãij,F (80)

ãij < 0 −→ V ′
i,j ≈ (Vij,B)

′, ãij = ãij,B (81)

ãij = 0 −→ V ′
i,j ≈ ((1− γ)Vi,j)

1−θ (yj + rai)
−δ ≡ (V ij)

′. (82)

For the last case, we use the FOC (75) and the saving equation (76) using si,j = 0 (since

θ ̸= 0). Furthermore, because ãij depends on V ′
i,j through ci,j (see FOC), it could be

forward or backward. I then consider this fact in the coefficient ãij , which is given by

ãij,F = θsi,j,F ≡ θ (yj + rai − ci,j,F ) , (83)

ãij,B = θsi,j,B ≡ θ (yj + rai − ci,j,B) . (84)
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The three cases stated in the rule of the Upwind scheme about the first derivative of

Vj with respect to a (expressions 80 - 82) can be summarized in one equation.

V ′
i,j = (Vij,F )

′1ãij,F>0 + (Vij,B)
′1ãij,B<0 + (V ij)

′1ãij,F<0<ãij,B
, (85)

where 1{·} denotes an indicator function. The equation (85) represents the Upwind

scheme indicating when we should use the forward or backward difference approximation

of the first derivative of Vj w.r.t a. It also says what approximation to use when ãij is

zero. Therefore, the discretized PDE of Vj is given by

V n+1
i,j − V n

i,j

∆
= Vi,j

[
c1−δ
i,j [(1− γ)Vi,j ]

−θ − ρ
]

+ ãij,F (Vij,F )
′ + ãij,B(Vij,B)

′

+ λjθ (Vi,−j − Vi,j) (86)

with finite difference approximations (Eq. 80-82), the FOC (75), and the Upwind scheme

rule (85).

B.5 Solution Method

Up to this point, we have the discretized PDE of Vj with the Finite Difference method

and the Upwind scheme. Our next step is to set up the solution method (explicit or the

implicit method). I use the implicit method for its outstanding properties in convergency

(Candler, 2001; Achdou et al., 2022). After that, we express the system of 2 × (I + 1)

equations from (87) in a matrix system, where I + 1 is the number of grid points and

the number two that multiplies (I + 1) reflects the fact that we have two agent types

(j ∈ {1, 2}).

B.5.1 The Implicit Method

Using the implicit method, the discretized equation (87) is now evaluated in n+ 1.

V n+1
i,j − V n

i,j

∆
= V n

i,j

(
cni,j
)1−δ [

(1− γ)V n
i,j

]−θ − ρV n+1
i,j

+ ãnij,F (V
n+1
ij,F )′ + ãnij,B(V

n+1
ij,B )′

+ λjθ
(
V n+1
i,−j − V n+1

i,j

)
(87)

The implementation of the implicit method deserves some comments.

1. Three alternatives.

• Alternative 1. Initially, we can think to use f(cni,j , V
n
i,j) in (87). However, this

is problematic since the term associated to ρ is used as an input and not as a

variable. Convergence has problem in this case.
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• Alternative 2. Working on f(ci,j , Vi,j):

f(ci,j , Vi,j) =
1

1− δ
(1− γ)Vi,j ×

[
c1−δ
i,j [(1− γ)Vi,j ]

− 1−δ
1−γ − ρ

]
=

Vi,j
θ

× c1−δ
i,j [(1− γ)Vi,j ]

−θ − ρ
Vi,j
θ

=
V n
i,j

θ
×
(
cni,j
)1−δ [

(1− γ)V n
i,j

]−θ − ρ
V n+1
i,j

θ

= f(cni,j , V
n
i,j , V

n+1
i,j ) (88)

We used Eq. (88) instead of f(cni,j , V
n
i,j). Our argument is that if we use this

approach for CRRA preferences (θ = 1), Eq. (88) becomes

fj(cj , Vj) =

(
cnj

)1−δ

(1− γ)
− ρV n+1

j ,

which is the correct specification for CRRA. Then, this approach is consistent

with CRRA when we shut down Epstein-Zin preference parameters.

• Alternative 3. Based on Candler (2001), we can do the following:

f(ci,j , Vi,j) =
1

1− δ
(1− γ)Vi,j ×

[
c1−δ
i,j [(1− γ)Vi,j ]

− 1−δ
1−γ − ρ

]
=

V n+1
i,j

θ
×
[(
cni,j
)1−δ [

(1− γ)V n
i,j

]−θ − ρ
]

= f(cni,j , V
n
i,j , V

n+1
i,j )

However, it does not work since V n
i,j and V n+1

i,j are multiplicative each other,

making the system non-linear or we cannot separate V n
i,j and V n+1

i,j .

2. The variables in the system (87) are the terms of V n+1
i,j for i = 1 + I. Then, to

make this system linear, the coefficients that depend on Vi,j should be evaluated in

n. This allows the coefficients to be known.

3. The same approach is used in the coefficient of (V n+1
ij,F )′ and (V n+1

ij,B )′. These coeffi-

cients are evaluated at n as follows.

ãnij,F = θ
(
yj + rai − cni,j,F

)
, (89)

ãnij,B = θ
(
yj + rai − cni,j,B

)
. (90)

This implies that these coefficients are known in the iteration n + 1. Then, it also

helps to have a linear system.

B.5.2 Algebraic Equation System

I then introduce the definition of forward, backward, and central difference approximations

in Eq. (87), and evaluate this equation for every point of the grid. As a result, we have a

linear system in the elements of V n+1
j . As a result, Eq. (87) becomes

34



1

∆

[
V n+1
j=1

V n+1
j=2

]
− 1

∆

[
V n
j=1

V n
j=2

]
+ ρ

[
V n+1
j=1

V n+1
j=2

]
= f̄n+

[(
A1 0

0 A2

)
+

(
−L1 L1

L2 −L2

)][
V n+1
j=1

V n+1
j=2

]
(91)

where A1 and A2 are coefficient matrices, given by

A1 =



Y11 Z11 0 0 . . 0 0

X21 Y21 Z21 0 . . 0 0

0 X31 Y31 Z31 0 . . 0

.

.

.

0 0 0 . . . XI1 YI1


(92)

A2 =



Y12 Z12 0 0 . . 0 0

X22 Y22 Z22 0 . . 0 0

0 X32 Y32 Z32 0 . . 0

.

.

.

0 0 0 . . . XI2 YI2


(93)

Furthermore, L1 and L2 are defined as

L1 =



θλ1 0 0 0 · · · 0 0

0 θλ1 0 0 · · · · · · 0

0 0 θλ1 0 · · · · · · · · ·
...

...
...

...
...

...
...

...
...

...
...

...
...

...

0 0 0 0 · · · · · · θλ1


(94)

L2 =



θλ2 0 0 0 · · · 0 0

0 θλ2 0 0 · · · · · · 0

0 0 θλ2 0 · · · · · · · · ·
...

...
...

...
...

...
...

...
...

...
...

...
...

...

0 0 0 0 · · · · · · θλ2


(95)

Then, I express the system (91) in matrix form as follows.

1

∆
(V n+1 − V n) + ρV n+1 = f̄n +AnV n+1, (96)

where
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An =

[(
A1 0

0 A2

)
+

(
−L1 L1

L2 −L2

)]
, f̄n =



V n
11 (c

n
11)

1−δ [(1− γ)V n
11]

−θ)
...

V n
I1 (c

n
I1)

1−δ [(1− γ)V n
I1]

−θ

V n
12 (c

n
12)

1−δ [(1− γ)V n
12]

−θ)
...

V n
I2 (c

n
I2)

1−δ [(1− γ)V n
I2]

−θ)


Ordering the terms such as V n+1 is on the left side, we have

[
1

∆
I2Ix2I + ρI2Ix2I −An

]
︸ ︷︷ ︸

=Bn

V n+1 = f̄n +
V n

∆︸ ︷︷ ︸
=bn

BnV n+1 = bn (97)

where Bn is a (I+1)×(I+1) matrix and bn is a (I+1)×1 vector. Both are filled with

known coefficients. To find the optimal V n+1, it is common to use a loop in which the

difference between V n+1 and V n is less than a convergency criterion. When that criterion

is fulfilled, V n+1 is the optimal value function.
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C Robustness Analysis

In this appendix, we evaluate the model convergency and the existence of equilibrium for

a different set of parameter values (λ1, λ2, y1, y2).

Table 6: Alternative Parameter Values

Parameters Symbol Value

Subjective discount rate ρ 0.05

Relative risk aversion (RRA) γ 3

Elasticity of intertemporal substitution (EIS) 1/δ 0.5

Intensity to jump between states {λ1, λ2} {0.6931, 0.6931}
Borrowing limit a -0.15

Income level {y1, y2} {0.1, 0.2}
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Figure 9: Model Convergence and Equilibrium.
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D Probabilistic Approach

1. Type of models to apply this solution technique: Heterogeneous-agent model

with idiosyncratic and aggregate shocks. This model has two characteristics:

(a) The state variable (a distribution) is given when the agents solves his dynamic

optimization problem.

• State variable: the distribution of individual characteristics (e.g., wealth

distribution)–this is an infinite dimensional state variable (problem: curse

of dimensionality).

• Challenge: it is to calculate conditional expectations of objects that de-

pends on the state variable (a distribution) when an agent solves his dy-

namic optimization problem. The solution technique (Probabilistic Solu-

tion Technique) attacks this problem: the probabilistic approach enhances

the computational efficiency of calculating these expectations.

(b) The dynamic of the state variable (a distribution) are driven by low-dimensional

aggregate shocks ([what is low? two, three aggregate shocks?])

2. The Probabilistic Solution: This is a solution technique that searches global

solutions: It is a solution that accounts for the full state space of the model. This

contrasts with local solutions, which are only valid in the vicinity of a specific state

or equilibrium.

3. Key components of the Probabilistic Solution:

• The probabilistic formulation [of What?] indicates that a forward-looking ran-

dom variable can be expressed as the sum of two components:

(a) its conditional expectation, and

(b) a linear impact of exogenous shocks within a short time interval. [Questions:

these shocks are the aggregate shocks of the model or what type of shocks

they are?]

D.1 An Example

This example illustrates the computational advantage of the probabilistic formulation.

1. State variable: (a) one dimensional, and (b) uncontrolled:

Xt+∆ = Xt + µ(Xt)∆ + σ(Xt)(Wt+∆ −Wt), (98)

where ∆ denotes the length of time period and (Wt+∆ −Wt) ∼ N (0,∆).

2. The functional equation (e.g. HJB equation): V (Xt) is the forward-looking

process defined as a fixed point of the following functional equation (or the Condi-

tional Expectation Equation):

V (Xt) = u(Xt)∆ + E[V (Xt+∆)|Xt] (99)
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We want to solve Eq. (99): search V (Xt). We have two approaches.

D.1.1 Approach 1: Analytic Approach

1. Continuous-time: take limit Eq. (98) and (99) when ∆ → 0.

2. Apply Ito’s lemma on Eq. (99), and we find the HJB equation: a PDE.

3. We can use finite difference method to approximate the derivatives of V to solve the

PDE.

Remark. In the case of one-dimensional state variable, the finite difference method

is straightforward to apply. The challenge emerges when X is a distribution (multidimen-

sional state variable).

D.1.2 Approach 2: Probabilistic Approach

1. We rewrite Eq. (99) as follows:

E[V (Xt+∆)|Xt] = V (Xt)− u(Xt)∆ (100)

2. Continuous-time: take limit Eq. (98) and (99) when ∆ → 0. Specifically, Eq. (100)

becomes:

E[V (Xt+(∆→0))|Xt] = V (Xt), (101)

indicating that V (Xt) is a martingale.

3. Using theMartingale Representation Theorem on V (Xt): when ∆ is sufficiently

small, there exists a function z(·) such that:

V (Xt+∆) = E[V (Xt+∆)|Xt] + z(Xt)(Wt+∆ −Wt),

which is (the Probabilistic Equation):

V (Xt+∆) = V (Xt)− u(Xt)∆ + z(Xt)(Wt+∆ −Wt) (102)

• z(Xt): unknown coefficient of the shock.

• We need to find z(Xt) and V (Xt).

• Eq. (102) is referred as a Backward Stochastic Differential Equation

(BSDE).

• Eq. (102) holds for any realization of (Wt+∆−Wt). Then, given Xt, if we have

100 realizations of (Wt+∆−Wt), we will have 100 equations (102), where z(Xt)

and V (Xt) are the variables. So, we have 100 equations and two variables, in

this case? Yes. Then, in this case I only need TWO realizations.

• [Question:] (Wt+∆ −Wt) is the same shock that drives the dynamics of Xt?

YES!
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• Importantly, Xt+∆ is obtained by Eq. (98):

Xt+∆ = Xt + µ(Xt)∆ + σ(Xt)(Wt+∆ −Wt). (103)

• Therefore, we have, in this case, we have two sets of two equations:

X
(1)
t+∆ = Xt + µ(Xt)∆ + σ(Xt)(Wt+∆ −Wt)

(1)

V (X
(1)
t+∆) = V (Xt)− u(Xt)∆ + z(Xt)(Wt+∆ −Wt)

(1)

X
(2)
t+∆ = Xt + µ(Xt)∆ + σ(Xt)(Wt+∆ −Wt)

(2)

V (X
(2)
t+∆) = V (Xt)− u(Xt)∆ + z(Xt)(Wt+∆ −Wt)

(2)

However, we are interested in solving the following system:

V (X
(1)
t+∆) = V (Xt)− u(Xt)∆ + z(Xt)(Wt+∆ −Wt)

(1)

V (X
(2)
t+∆) = V (Xt)− u(Xt)∆ + z(Xt)(Wt+∆ −Wt)

(2)

4. Since these are Backward SDE, we can express them as

V (X
(1)
t+∆) = V (Xt)− u(Xt)∆ + z(Xt)(Wt+∆ −Wt)

(1)

V (x̂(i,j)) = V (xi)− u(xi)∆ + z(xi)(Wt+∆ −Wt)
(j), j = 1, 2, . . . ,M. i = 1, 2, 3, . . . , N.

V (x̂(i,j)) = V (xi)− u(xi)∆ + z(xi)w(i,j), (104)

(105)

• The current state variable Xt can take many values. For instance, we can

discretize it in N values as {X(1)
t , X

(2)
t , . . . , X

(N)
t }. We denotes the i-th value

of Xt as x
i = X

(i)
t .

• For each current value of the state variable xi, it is possible to have many

realizations of the shock (Wt+∆ −Wt)
(j), where j = 1, 2, . . . ,M . To capture

this relationship between xi and (Wt+∆ −Wt)
(j), we denote (Wt+∆ −Wt)

(j) as

w(i,j). Specifically, w(i,j) denotes the j-th realization of the shock given xi.

• x̂(i,j) = X
(j)
t+∆. It denotes the value of X at t + ∆ given xi and the shock

realization wi,j . Then, Eq. (103) can be written as:

x̂(i,j) = xi + µ(xi)∆ + σ(xi)w(i,j). (106)

5. Approximations: We approximate V (x̂(i,j)) and z(xi) by “parametric approxima-

tion” with parameter represented by Θ as follows:

V (x̂(i,j)) ≈ Ṽ (x̂(i,j); Θ) (107)

z(xi) ≈ z̃(xi; Θ) (108)
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Then, in Eq. (104):

Ṽ (x̂(i,j); Θ) = Ṽ (xi; Θ)− u(xi)∆ + z̃(xi; Θ)w(i,j) (109)

6. Loss Function. We then construct a “Loss Function” from Eq. (110):

L(i,j)(Θ) = Ṽ (x̂(i,j); Θ)− Ṽ (xi; Θ) + u(xi)∆− z̃(xi; Θ)w(i,j) (110)

Ideally, L(i,j)(Θ) should be zero.

7. Optimization Problem: Finding Θ such that we find the approximated solutions:

Ṽ (xi; Θ) and z̃(xi; Θ):

min
Θ

1

NxMw

Nx∑
i=1

Mw∑
j=1

(
L(i,j)(Θ)

)2
subject to:

x̂(i,j) = xi + µ(xi)∆ + σ(xi)w(i,j) (111)

xi : is the i-th value of Xt (112)

w(i,j) : is the j-th shock realization given xi that follows N(0,∆) (113)

Two Remarks:

• The volatility term z(·) is crucial in transforming the “conditional expectation equa-

tion” to the “probabilistic equation”.

• z(·) plays a vital role in solving portfolio choice problems in HA models:

– V ′(x)σ(x) = z(x)

– V ′(x)σ(x) = z(x): it captures the impact of exogenous shocks on agents’ life-

time expected utility.
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