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Abstract

What is the role of belief heterogeneity in shaping the equity term structure? We

address this question by developing a general equilibrium model featuring habit for-

mation in consumption and heterogeneity in both risk aversion and beliefs about the

expected growth rate of the aggregate endowment. We demonstrate that the effects of

belief heterogeneity are countercyclical: they increase equity yields during recessions

and reduce them during expansions. These effects are more pronounced for short-

term assets than for long-term ones. We then examine the role of diagnostic beliefs

and show that the overreaction parameter raises equity yields across maturities, with

particularly strong effects on short-term maturities during expansions. Overall, our

findings highlight the significant influence of belief heterogeneity in shaping the equity

term structure.
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1 Introduction

It is well-established in asset pricing literature that beliefs heterogeneity among market

participants plays an important role in determining security prices, particularly for long-

lived assets (e.g., Anderson et al., 2005; Basak, 2005; Atmaz and Basak, 2018).

However, the impact of belief heterogeneity on assets with varying maturities has re-

ceived little attention. What role does belief heterogeneity play in pricing assets with

different maturities? Do its effects differ between short-term and long-term assets? Are

these effects sensitive to changes in the business cycle? This paper addresses these ques-

tions by developing a model focusing on the term structure of equity yields.

Our model features an endowment economy with complete markets and “catching up

with the Joneses” preferences. The economy is populated by two types of investors who

differ in their risk attitudes and beliefs about the expected growth rate of the aggregate

endowment. We assume that the conservative investor is also pessimistic, while the bold

investor is optimistic.

We begin by demonstrating that modeling habit formation following Chan and Kogan

(2002) produces a procyclical slope of equity yields, consistent with empirical evidence (van

Binsbergen et al., 2013; Bansal et al., 2021; Giglio et al., 2024). This approach addresses

a key shortcoming of the classic habit model proposed by Campbell and Cochrane (1999),

which generates a countercyclical slope, shown by Giglio et al. (2024).

Next, we show that belief heterogeneity has significant implications for equity yields.

First, the impact of belief heterogeneity depends on the business cycle. In recessions, it

raises equity yields across maturities, while in expansions it reduces them. Second, the

level effect on equity yields is more pronounced during recessions than expansions. Third,

the magnitude of the effect is stronger for short-term assets than for long-term assets.

In recessions, an increase in belief disagreement implies that the bold-optimistic agent

assigns a higher probability to states of nature than the conservative-pessimistic agent.

Since recessions reflects bad states of nature, the probability of these states are exacerbated

by the bold agent when belief disagreement increases. As a result, the risk-sharing rule

reduces the consumption share of the bold agent, who is more exposed to risk. Specifically,

greater belief disagreement lowers the bold agent’s consumption, increasing his marginal

utility, which is already high during recessions.

Consequently, the stochastic discount factor decreases because the bold-optimistic

agent values current consumption more than future consumption during recessions. This

decline in the stochastic discount factor lowers the price of dividend strips, thereby increas-

ing their equity yields. Thus, belief disagreement generates an additional risk premium

for assets with different maturities to compensate investors for bearing greater risk during

recessions.

In expansions, the opposite occurs. As belief disagreement increases, the bold-optimistic

agent assigns a higher probability to states of nature. Since expansions reflects favorable

states of the economy, this reinforces his optimistic belief. As a result, the bold agent

optimally reallocates resources toward risky assets across maturities, anticipating stronger

economic growth than the observed process suggests. Consequently, asset prices across

2



different maturities rise, leading to lower equity yields.

This result contributes to reconciling two strands of literature on the effects of het-

erogeneous beliefs on a stock’s mean return: one suggesting a positive effect (Anderson

et al., 2005; David, 2008), and the other indicating a negative effect (Chen et al., 2002;

Johnson, 2004). Extending the analysis to assets with different maturities, we find that

heterogeneous beliefs positively affect yields during recessions but exert a negative impact

during expansions.

Our second result highlights that the effect of belief disagreement on equity yields is

more pronounced during recessions than expansions. This outcome is primarily driven

by the sensitivity of marginal utility to changes in consumption. Since marginal utility

is more responsive at lower consumption levels (recessions) than at higher consumption

levels (expansions), an increase in belief disagreement reduces the consumption of the

bold-optimistic agent in both economic regimes. However, the reduction in consumption

has a stronger impact on marginal utility during recessions, which significantly affects the

stochastic discount factor and, consequently, equity yields. Therefore, the effect of belief

disagreement on the level of equity yields is stronger during recessions than expansions.

We then incorporate diagnostic beliefs into our framework to examine their impact on

equity yields. Diagnostic beliefs capture the tendency of agents to overreact to good or

bad news, and we model them as a linear function of the state of the economy, governed

by an overreaction parameter. Agents are assumed to be heterogeneous with respect to

this parameter. Equipped with this feature, we first compare outcomes under diagnostic

beliefs with those under homogeneous beliefs. Our results show that diagnostic beliefs

raise equity yields across maturities during expansions and lower them during recessions,

with stronger effects on short-term assets in expansions. We then explore the implications

of increasing the overreaction parameter for the less risk-averse agent. In this case, equity

yields rise across maturities, with particularly strong effects on short-term assets during

expansions.

Taken together, our results indicate that heterogeneous beliefs—whether state-independent

or of the diagnostic type—have important effects on equity yields. These effects vary across

maturities and depend on the state of the business cycle. Thus, differences in belief for-

mation across agents appear to play a critical role in understanding the behavior of equity

yields.

This article belongs to the heterogeneous-agent asset pricing literature with focus on

heterogeneous beliefs (e.g., Basak, 2005; Bhamra and Uppal, 2014; Atmaz and Basak,

2018). Our model builds on the frameworks of Chan and Kogan (2002) and Bhamra

and Uppal (2014), with two key distinctions. First, we use the framework to study the

equity term structure, particularly how heterogeneous beliefs influence the procyclicality

of its slope. Second, we derive an approximate closed-form solution for equity yields,

enabling an analytical exploration of how belief disagreement shapes the slope of the

equity term structure. Additionally, this paper relates to the literature on equity term

structure (e.g., van Binsbergen et al., 2012, 2013; Callen and Lyle, 2020; Bansal et al.,

2021; Schröder, 2024). We contribute to this literature by highlighting the distinct role

of belief heterogeneity in shaping the equity term structure across the business cycle—a
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dimension that has not been explored previously.

The remainder of this paper is organized as follows. Section 2 describes the model.

Section 3 presents the derivation of the equilibrium. Section 4 examines the equity term

structure, Section 5 examines diagnostic beliefs, and we conclude in Section 6. Appendix

A provides the proofs and derivations, Appendix B details the numerical integration pro-

cedure for finding dividend strip prices, and Appendix C describes the step to perform

Monte Carlo simulation to derive equity yields under diagnostic beliefs.

2 The Heterogeneous-Agent Economy

In this section, we describe a continuous-time endowment economy populated by two

agents who differ in their risk aversion and beliefs. Their preferences feature external

habits, following Chan and Kogan (2002).

Uncertainty in the economy is modeled on a filtered probability space {Ω,F ,F,P},
where a one-dimensional Brownian motion Z is defined. As in Basak (2005), the filtration

is augmented to accommodate heterogeneity in agents’ priors, thereby introducing belief

heterogeneity.

2.1 The Endowment and the Standard of Living Processes

We assume that the exogenous aggregate endowment Y follows a geometric Brownian

motion with positive parameters (Y0, µ, σ > 0), given by:

dYt = µYtdt+ σYtdZt. (1)

This formulation ensures that the endowment remains strictly positive over time. We

then define a variable Xt, which represents the standard of living in the economy. Intu-

itively, Xt captures the average aggregate consumption experienced by the economy in the

past. Specifically, it is modeled as the weighted geometric average of past realizations of

the endowment Y :

Xt = exp

(∫ t
0 χsysds∫ t
0 χsds

)
, (2)

where ys = log Ys, and χs is a weighting function defined by:

χs = λxe
−λx(t−s), s ≤ t (3)

This specification follows Chan and Kogan (2002) and is sufficiently flexible to capture

the influence of past endowment realizations on the current standard of living through the

decay parameter λx. Applying Ito’s lemma to Eq. (2), the dynamics of xt = log(Xt) are

given by:

dxt = λx(yt − xt)dt. (4)

Next, we summarize the information contained in Yt and Xt into a single state variable:

the relative (log) consumption,

ωt = log(Yt/Xt), (5)
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whose dynamics evolve as:

dωt = λx(ω̄ − ωt)dt+ σdZt, (6)

where λx governs the speed of mean reversion, ω̄ = (µ − σ2/2)/λx is the long-run mean,

and σ2/(2λx) is the long-run variance of the process.

Therefore, the relative (log) consumption ωt serves as the main state variable in our

model. One advantage of this formulation is that the dynamics in Eq. (6) enable us

to study the economy under recessions (wt < ω̄t) and expansions (wt < ω̄t) in a unified

framework.

2.2 Financial Markets

Financial markets are assumed to be complete, and investment opportunities consist of

two long-lived assets: a risky and a riskless asset. We assume that the aggregate dividend

Dt is identical to the aggregate endowment, i.e., Dt = Yt. There is only one share of the

risky asset, implying that the dividend per share is given by δt = Dt.

Let St denote the price of the risky asset and Bt the price of the riskless asset. Their

dynamics are specified as follows:

dSt = (βtSt − Yt)dt+ σtStdZt, (7)

dBt = rtBtdt, (8)

where βt denotes the expected rate of return on the risky asset, rt is the instantaneous

risk-free rate, and σt is the volatility of the risky return. All of these quantities are

endogenously determined in equilibrium as functions of the underlying state variables.

2.3 Agents

Preferences. We assume that the economy is populated by two agents who differ in

both their risk aversion and beliefs about the growth rate of the endowment, µ. Their

preferences exhibit external habit formation as in Abel (1990), Chan and Kogan (2002),

and Du (2011). Specifically, each agent k ∈ {1, 2} has a constant relative risk aversion

utility function (CRRA) with relative risk aversion coefficient (RRA) γk, given by:

u(ck,t, Xt) =
(ck,t/Xt)

1−γk

1− γk
, (9)

where Xt denotes the standard of living in the economy, to which agents seek to adjust.

As Xt increases, agents raise their consumption levels accordingly. This complementarity

between Xt and current consumption requires the following condition to hold:

∂2u(ck,t, Xt)

∂Xt∂ck,t
= (1− γk)c

−γk
k,t X

γk−2
t ≥ 0, k ∈ {1, 2}.

This condition is satisfied when γk ≥ 1. Accordingly, we restrict our analysis to values

of RRA greater than one. As mentioned in the previous section, Xt is modeled according
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to Eq. (2).

Beliefs. We also assume that agents have different beliefs about µ, the true expected

growth rate of the aggregate endowment. More specifically, agent-k’s belief takes the

constant value, µk. Following the heterogeneous belief literature (Basak, 2005; Bhamra

and Uppal, 2014; Atmaz and Basak, 2018), the agent-k’s beliefs can be represented by an

exponential martingale:

ξk,t = e−
1
2
σ2
ξ,kt+σξ,kZt , k ∈ {1, 2} (10)

where the parameter σξ,k represents the agent-k’s beliefs disagreement per unit of risk,

expressed as:

σξ,k ≡ µk − µ

σ
. (11)

The parameter σξ,k is positive when investor k is more optimistic, and negative when

the investor is more pessimistic. Furthermore, ξk,t denotes the Radon-Nikodym derivative

dPk/dP, where Pk represents the subjective probability measure of agent k, and P is the

objective (physical) probability measure. This derivative provides the link between the

expectation of a random variable under the agent’s subjective measure and its expectation

under the physical measure, as follows:

EPk

0 [Ft] =
EP
0 [Ft × ξk,t]

EP
0 [ξk,t]

=
EP
0 [Ft × ξk,t]

ξk,0
= EP

0 [Ft × ξk,t] , k = {1, 2}. (12)

The first equality follows from Bayes’ theorem, while the second exploits the fact that

the Radon-Nikodym derivative ξk,t is a martingale under the objective probability measure.

The third equality assumes ξk,0 = 1. When ξk,t = 1, agent-k’s beliefs coincide with the

objective probability measure, implying µk = µ. Equation (10) can also be expressed as:

dξk,t
ξk,t

= σξ,kdZt −→ ξk,t = ξk,0 × e−
1
2
σ2
ξ,kt+σξ,kZt . (13)

We then define the aggregate level of disagreement between these two investors as1

ξt ≡
ξ2,t
ξ1,t

= e−
1
2
(σ2

ξ,2−σ2
ξ,1)t+(σξ,2−σξ,1)Zt . (14)

When ξt = 1, both agents have identical subjective probability measures, meaning

P1 = P2. We can interpret ξt as the ratio of the probability that agent-2 assigns to

a particular state relative to the probability assigned by agent-1. The dynamics of ξt
depends on the difference between the agents’ beliefs. Using the baseline calibration (as

1Technically, Basak (2005) derives Eq. (14) through the following steps. First, the relationship between

an agent’s marginal utility and the state price density under the agent’s subjective beliefs is established

using the first-order conditions of the agent’s optimization problem. Second, a link is derived between the

agents’ weight processes and their marginal utilities by solving the representative agent problem under

objective probabilities. Combining these two results yields a relationship between the ratio of agents’

weights and the ratio of their state price densities. Finally, applying Itô’s lemma to this expression

provides the dynamics of the weight ratio, ξt.
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we show later), agent-1 has optimistic beliefs while agent-2 has pessimistic beliefs, i.e.,

µ1 > µ > µ2. If ξt < 1, this implies P2 < P1. This happens when the economy is hit

by positive shocks. Since agent-2 is pessimistic relative to agent-1, she assigns a lower

probability to the state than agent-1 does, as a good state of economy is not as likely to

happen in her belief. Conversely, if ξt > 1, pessimistic agent-2 assigns a higher probability

to the state of the economy when it is hit by negative shocks.

The dynamics of ξt can also be written as

dξt
ξt

= −σξ,1(σξ,2 − σξ,1)dt+ σξdZt, (15)

where σξ is defined as:

σξ = σξ,2 − σξ,1 ≡
µ2 − µ1

σ
. (16)

In this economy, we have two exogenous state variables, ωt and ξt, the relative (log)

consumption and aggregate level of disagreement, respectively.

Optimization problem. The portfolio of agent-k is represented by
(
ω
(1)
k,t , ω

(2)
k,t

)
, where

ω
(1)
kt is the portfolio weight for the risky asset, ω

(2)
k,t is the portfolio weight for the riskless

asset, and ω
(1)
k,t + ω

(2)
k,t = 1. The agent-k’s wealth evolves according to

dWk,t

Wk,t
= µk,tdt+ σk,tdZt, (17)

where

µk,t = ω
(1)
k,t (βt − rt) + rt −

ck,t
Wk,t

and σk,t = ω
(1)
k,tσt. (18)

Then, we define the stochastic optimal control problem of agent-k for k ∈ {1, 2} as

sup{
ck,t,

(
ω
(1)
k,t ,ω

(2)
k,t

)}∞

t=0

Ek
0

[∫ ∞

0
e−ρtu(ckt, Xt)dt

]
, (19)

subject to (17) with the given initial value of Wk,0 and constraints on the control

variable ck,t ≥ 0.

2.4 The Equilibrium

The market equilibrium of the economy is defined by the pair of price processes {St, rt}
and consumption-trading strategies

{
ck,t,

{
ω
(1)
k,t , ω

(2)
k,t

}
; k ∈ {1, 2}

}
such that

1. These strategies solve the stochastic optimal control problem of agent-k for k ∈ {1, 2}
described by equations (19), and

2. Markets clear

• Goods markets. The aggregate dividends (Dt = Yt) are used for agents’ con-

sumption such that

c1,t + c2,t = Yt (20)
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• Financial markets. There is only one share of the risky asset in the economy

(positive net supply), and the riskless asset is in zero net supply.

ω
(1)
1,tW1,t + ω

(1)
2,tW2,t = St (risky asset market) (21)

ω
(2)
1,tW1,t + ω

(2)
2,tW2,t = 0 (riskless asset market) (22)

3 Solving for the Equilibrium

In this section, we derive expressions for optimal consumption, the interest rate, the price

of risk, and the stochastic discount factor. First, we assign values to the parameters of

our model based on previous literature. Second, we use the social planner equilibrium to

determine asset prices and equilibrium quantities.

Parameter values. Since our model extends Chan and Kogan (2002) by incorporating

heterogeneous beliefs, we adopt their parameter values for the subjective discount rate, ρ,

the dynamics of aggregate consumption (µ and σ), and habit persistence, λx, as reported

in Table 1.

We set the relative risk aversion parameters for the less and more risk-averse agents,

γ1 and γ2, within the standard range of one to ten commonly used in the macro-finance

literature (e.g., Longstaff and Wang, 2012). Specifically, we assume γ1 = 1.2 and γ2 = 2.

In this section, we examine the case in which beliefs are state-independent, meaning that

agents remain optimistic or pessimistic regardless of the state of the economy. In this

setting, the less risk-averse agent 1 is assumed to be optimistic and holds beliefs about

the expected growth rate of the endowment that exceed the true value, i.e., µ1 = µ+∆.

The more risk-averse agent 2, by contrast, holds pessimistic beliefs such that µ2 = µ−∆.

Following Kogan et al. (2006), we set ∆ = 3σ2 ≈ 0.005. Our baseline calibration aligns

with key empirical asset pricing features, including a procyclical price-dividend ratio and

countercyclical dynamics in both the price of risk and stock return volatility.

Table 1: Parameter Values

Parameters Symbol Values

Subjective discount rate (%) ρ 5.21

Mean consumption growth (%) µ 1.8

S.D. consumption growth (%) σ 4.02

Habit persistence (%) λx 5.87

RRA of less risk-averse agent γ1 1.2

RRA of more risk-averse agent γ2 2

Weight of agent-1 in social planner λ 0.66

Belief of less risk-averse agent (optimistic) (%) µ1 2.3

Belief of more risk-averse agent (pessimistic) (%) µ2 1.3
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The Social Planner economy. Given the assumptions of time-separable preferences and

complete financial markets, the dynamic consumption-portfolio choice problem simplifies

to a sequence of static problems. At each date and state, the planner determines the

optimal allocation of consumption between the two investors—that is, the social planner’s

problem. As shown by Basak (2005), when agents hold heterogeneous beliefs, the weights

used to construct the planner’s utility function become stochastic processes. We charac-

terize the equilibrium of the social planner’s problem to derive each agent’s consumption,

ck,t = ck(ωt, ξt), the interest rate, rt = r(ωt, ξt), and the price of risk, ψt = ψ(ωt, ξt), as

presented in Lemma 1.

Before presenting the equilibrium results, we define the key objects that summarize

heterogeneity in preferences and beliefs: aggregate risk aversion Rt, aggregate prudence

Pt, the consumption-share-weighted relative risk tolerance of agent k, wk,t, and aggregate

belief ut:

Rt =

(
c̃1,t
γ1

+
c̃2,t
γ2

)−1

,

Pt = (1 + γ1)

(
Rt

γ1

)2

c̃1,t + (1 + γ2)

(
Rt

γ2

)2

c̃2,t,

wk,t =
c̃k,t
γk

Rt,

ut = w1,tµ1 + w2,tµ2.

Lemma 1. A Social Planner equilibrium can be constructed under the assumptions of

complete financial markets and the absence of arbitrage opportunities. Under these condi-

tions, the following results hold:

• The first-order condition (FOC) of the social planner’s problem is given by

λ1,tuc1,t(c1,t, Xt) = λ2,tuc2,t(c2,t, Xt), (23)

where λk,t ≡ λk,0ξk,t denotes the stochastic weight of agent k’s utility in the planner’s

objective function, λk,0 represents agent k’s initial endowment, and uck,t(ck,t, Xt) =

∂u(ck,t, Xt)/∂ck,t denotes the marginal utility of consumption for agent k, with k ∈
{1, 2}. Equation (23) characterizes the optimal risk-sharing condition in the econ-

omy, which determines how aggregate consumption is allocated between the two

agents in equilibrium. It can be rewritten as:

λ1,0ξ1,te
−ρt

(
1

Xt

)1−γ1

c−γ1
1,t = λ2,0ξ2,te

−ρt

(
1

Xt

)1−γ2

c−γ2
2,t . (24)

• Defining mt as the equilibrium stochastic discount factor (SDF), and c̃k,t ≡
ck,t
Yt

as

the agent’s consumption share, equation (24) can be expressed as:

mt ≡ m̂1,tc̃
−γ1
1,t = m̂2,tc̃

−γ2
2,t , (25)

where m̂k,t, defined below, represents the SDF under the physical probability measure

P when agent k is the sole representative agent in the economy:

m̂k,t = λk,0ξk,te
−ρte−γkωt−xt . (26)
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• The equilibrium risk-free interest rate is given by:

rt = ρ+Rtut −
1

2
RtPtσ

2 − (Rt − 1)λxωt

+
1

2
w1,tw2,t

(
1− Rt

γ1γ2

)
σ2ξ − w1,tw2,tRt

(
1

γ1
− 1

γ2

)
(µ1 − µ2), (27)

• The equilibrium price of risk is given by:

ψt = Rtσ +
µ− ut

σ
. (28)

Proof. See Appendix A.1.

This lemma illustrates the effects of belief heterogeneity on the interest rate and the

price of risk. Specifically, belief heterogeneity influences the interest rate through three

mechanisms. First, beliefs are aggregated into ut, increasing or decreasing rt relative

to the homogeneous-belief case, depending on the relative importance of optimistic or

pessimistic agents in the economy. Second, differences in beliefs introduce an additional

source of uncertainty, which is priced into the interest rate and captured by σ2ξ , increasing

the interest rate when γk > 1. This effect persists even when agents are homogeneous in

their degree of risk aversion. However, when agents also differ in their risk attitudes, belief

heterogeneity amplifies this effect, as shown in the last term of Eq. (27). In particular,

when the less risk-averse agent (γ1 < γ2) is also the more optimistic one (µ1 > µ2), the

interest rate decreases.

To gain further insights into the effects of belief heterogeneity on equilibrium quantities,

we plot the consumption share of agent 1 as a function of ωt and ξt in Figure 1. It is worth

noting that the consumption share of the less risk-averse agent is procyclical; that is, it

increases with ωt. Intuitively, lower risk aversion induces the agent to take on greater

exposure to aggregate risk by investing more heavily in risky assets. As a result, her

consumption rises in good states of the economy (e.g., when ωt is high). This mechanism,

commonly referred to as risk-sharing in the heterogeneous-agent literature, lies at the core

of the determination of equilibrium quantities. Meanwhile, belief disagreement modifies

the risk-sharing mechanism: specifically, a lower ξt significantly increases the consumption

share of agent 1. The intuition behind this result is as follows: when ξt is low (e.g.,

ξt = ξ2
ξ1
< 1), the agent 1 assigns more likelihood to state of the world, based on her

beliefs. For instance, when the current state is a recession, the agent 1 is surprised since

she thought that this state

Next, we plot the equilibrium interest rate and price of risk as functions of ωt and ξt
in Figure 2. The risk-free interest rate is negatively related to ωt because agents exhibit

habit preferences, resulting in a countercyclical interest rate. Belief differences affect the

sensitivity of the interest rate to the state of the economy by altering its slope. A similar

effect appears in the price of risk: a higher ξt significantly increases the price of risk, which

is also countercyclical, consistent with the existing literature. As the economy becomes

more risk-averse in bad states, the price of risk rises, reflecting greater compensation

required to bear risk due to heightened aggregate risk aversion.
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Figure 1: Optimal Consumption (the Bold-Optimistic agent). The left panel illus-

trates the consumption share of the Bold-Optimistic agent as a function of relative (log)

consumption, ωt, for two levels of belief disagreement, ξt. The right panel depicts the con-

sumption share of the Bold-Optimistic agent over the grid of both state variables, ωt and

ξt. Given that ωt ∼ N(ω̄, σ2ω) with σ
2
ω = σ2

2λx
, we construct the grid for ωt over the interval

[ω̄ − 3σω, ω̄ + 3σω], which approximately captures 99% of its realizations. Similarly, since

log ξt ∼ N(µξ, σ
2
ξ ), where µξ = −1

2(σ
2
ξ,2 − σ2ξ,1) and σξ = σξ,2 − σξ,1, we construct the

grid for log ξt over the interval [µξ − 3σξ, µξ + 3σξ], also capturing approximately 99% of

its realizations. Consequently, the grid for ξt is defined as [exp(µξ − 3σξ), exp(µξ + 3σξ)].

Parameter values correspond to the baseline calibration of our model.
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Figure 2: Equilibrium Interest Rate rt and Price of Risk ψt. The upper panel

displays the interest rate and the price of risk as functions of relative (log) consumption

ω for two levels of belief disagreement ξ. The lower panel shows the interest rate and the

price of risk over the grid of both state variables, ω and ξ. The parameter values reflect

the baseline calibration of our model.
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4 The Equity Term Structure

In this section, we study the model’s implications for the term structure of equity yields.

First, we present facts about the slope and volatility of the equity term structure. Second,

we calculate the price of dividend strips based on our model features and then determine

the equity term structure. Our goal in this section is to compare the equity term structure

generated by our model with the data.

4.1 Preliminary Evidence

We highlight five main characteristics of the term structure of equity yields based on

the estimation of Giglio et al. (2024) for 1974-2020. Specifically, we use their estimated

equity term structure for the aggregate market index to determine its features. First,

its average slope is procyclical, showing a positive slope in normal times and a negative

slope in recessions. Second, the level of equity yields is countercyclical across maturities,

above the unconditional yields in recessions and below them in normal times. Third,

the unconditional average slope exhibits a positive sign.2 Fourth, the volatility of the

term structure of equity yields behaves countercyclically, above the unconditional value in

recessions and below it in normal times. Fifth, the volatility of equity yields consistently

decreases with maturity, which is consistent with van Binsbergen and Koijen (2017) and

van Binsbergen et al. (2012).

4.2 The Price of Dividend Strips

We define a dividend strip as an asset that delivers Yt+τ units of consumption τ periods

from now. Its price at time t, denoted by h
(τ)
t , is given by:

h
(τ−n)
t+n = Et+n

[
mt+τ

mt+n
Yt+τ

]
, n ∈ {0, 1, · · · , τ}, (29)

where n ∈ {0, 1, 2, · · · , τ − 1, τ} represents the period for which we calculate the price. By

setting n = 0 in Eq. (29) and considering the expression for the stochastic discount factor

from Eq. (25), the current price of a dividend strip with maturity τ is given by:

h
(τ)
t = e−ρτ e

γ1ωt+xt

ξ1,tc̃
−γ1
1,t

Et

[
e−(γ1−1)ωt+τ ξ1,t+τ c̃

−γ1
1,t+τ

]
︸ ︷︷ ︸

f(ωt+τ ,ξt+τ ,ξ1,t+τ )

. (30)

The fact that the optimal consumption share c̃k,t for k ∈ {1, 2} is a function of ωt

and ξt (as shown in Lemma 1) implies that the expression inside the expectation op-

erator in Eq. (30) depends on ωt+τ and ξt+τ , which are random variables driven by

same Brownian shocks. However, this expectation cannot be solved analytically because

2Preliminary evidence suggested that the equity term structure has an unconditional downward

slope(van Binsbergen et al., 2012; van Binsbergen and Koijen, 2017). However, recent literature shows

that this is not the case, the term structure has an unconditional upward slope (Bansal et al., 2021; Giglio

et al., 2024; Boguth et al., 2023; Schröder, 2024).
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f(ωt+τ , ξt+τ , ξ1,t+τ ) is a nonlinear function of ωt+τ and ξt+τ . Therefore, we solve it using

the Gaussian quadrature procedure. The following lemma specifies the price of dividend

strips. We leave the details of the implementation of this numerical integration method

in Appendix B.

Lemma 2. The price of dividend strips is given as following, in which a random variable

s̃ ∼ N (0, 1) is introduced inside the expectation operator.

h
(τ)
t = e−ρτ e

γ1ωt+xt− 1
2
σ2
ξ,1τ

c̃−γ1
1,t

Et

[
e−(γ1−1)ωt+τ (s̃)eσξ,1

√
τ×s̃ [c̃1,t+τ (s̃)]

−γ1
]
, s̃ ∼ N (0, 1),

(31)

ωt+τ and ξt+τ are transformed into random variables based on s̃ accordingly, as follows,

ωt+τ = ω̄ + (ωt − ω̄)e−λxτ + σe−λxτ

√
e2λxτ − 1

2λx
× s̃, (32)

ξt+τ = ξte
aτ+

µ2−µ1
σ

√
τ×s̃, with aτ = −1

2
(σ2ξ,2 − σ2ξ,1)τ. (33)

Proof. See Appendix A.2.

This lemma shows that the expression f(ωt+τ , ξt+τ , ξ1,t+τ ) in Eq. (30) can be rewrit-

ten as a function of a standard normal variable s̃ and the model’s parameters, thereby

simplifying the computation of the expectation in the dividend price equation.

4.3 The Term Structure of Equity Yields

We now examine the effects of heterogeneous beliefs on equity yields, defined as:

rτt =
1

τ
log

Yt

h
(τ)
t

, (34)

where h
(τ)
t denotes the price of a dividend strip with maturity τ , and Yt is the dividend

at time t. The term structure of equity yields refers to the sequence rτt across maturities

τ . Our focus is on how differences in beliefs affect the slope of this term structure.

Using the expression for h
(τ)
t from Eq. (31), the following lemma provides a closed-

form expression for the equity yield rτt . The numerical evaluation of expectations follows

the same procedure outlined in Lemma 2.

Lemma 3. The equity yield is given as following.

rτt =
1

τ
log

[
g(ωt, c̃1,t)

Et

[
eσK,τ s̃ [c̃1,t+τ (s)]

−γ1
]] . (35)

Proof. See Appendix A.3.

Equation (35) indicates that equity yields depend on the current and future distribution

of the state variables. To better understand the determinants of equity yields, we seek
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an approximate relationship between consumption and the state variable. Although the

risk-sharing rule reveals that this relationship is highly nonlinear, it is possible to find a

simplified relationship that aids in expressing rτt , as demonstrated in the following Lemma.

Lemma 4. Given the solution of the theoretical model, the following holds:

1. Optimal Consumption: From risk-sharing rule evaluated at t + τ , using the fol-

lowing approximation: ecc1,t ≈ 1 + cc1,t, there is an approximate linear relationship

between cc1,t+τ ≡ log(c̃1,t+τ ) and ωt+τ and log(ξt + τ), given by

cc1,t+τ ≈ −A−Bωt+τ − C log(ξt+τ ) (36)

where constants A, B, and C are given by

A =
log(λ2,0/λ1,0) + γ2

γ1 + γ2
, B =

γ1 − γ2
γ1 + γ2

, C =
1

γ1 + γ2
. (37)

2. The Nonlinear Expectation: Using expression (36) evaluated at t, log g(ωt, c̃1,t)

can be written as

log g(ωt, c̃1,t) = ρτ − (γ1 − 1)ωt+(γ1 − 1)
(
ω̄ + (ωt − ω̄)e−λxτ

)
+

1

2
σ2ξ,1τ − γ1 log(c̃1,t)

≈ ρτ − (γ1 − 1)ωt+(γ1 − 1)
(
ω̄ + (ωt − ω̄)e−λxτ

)
+

1

2
σ2ξ,1τ

+ γ1A+ γ1Bωt + γ1C log(ξt) (38)

Furthermore, using expression Eq. (36), the component logEt

[
eσK,τ s̃ [c̃1,t+τ (s̃)]

−γ1
]

of equity yields rτt from Eq. (35) can be expressed as follows:

logEt

[
eσK,τ s̃ [c̃1,t+τ (s̃)]

−γ1
]
≈ γ1A+ γ1B

[
ω̄ + (ωt − ω̄)e−λxτ

]
+ γ1C [log(ξt) + aτ ] +

1

2
σ2H,τ , (39)

where

σH,τ = σK,τ + γ1Bσe
−λxτ

√
e2λxτ − 1

2λx
+
µ2 − µ1

σ

√
τ . (40)

3. Equity Yields: Using above expressions (38) and (39), the equity yields (Eq. 35)

can be expressed as follows:

rτt ≈ ρ+
1

2
σ2ξ,1 +

1

τ

[
b(ωt − ω̄)

(
1− e−λxτ

)
− γ1Caτ −

1

2
σ2H,τ

]
(41)

The coefficient b is expressed as b = (γ1 + γ2 − 2γ1γ2)/(γ1 + γ2) < 0.

Proof. See Appendix A.4.

This Lemma warrants further discussion. Firstly, there is an approximate linear rela-

tionship between (log) consumption and the state variable, primarily driven by preference
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heterogeneity. Secondly, the expectation component of equity yields is largely explained

by the first and second moments of the distribution of ωt+τ . In this context, habit per-

sistence λx plays a crucial role. Thirdly, Equation (41) indicates that equity yields are

state-dependent, meaning that in good times (ωt > ω̄), rτt is lower than in bad times

(ωt < ω̄). Additionally, preference heterogeneity, represented by the coefficient b, and

habit persistence significantly influence the equity term structure.

In Figure 3,4 we plot the equity yields generated by the heterogeneous-agent model

with habits. Interestingly, the model produces an unconditionally downward-sloping term

structure of equity yields. Furthermore, it generates a downward-sloping equity term

structure in recessions (low values of ωt) and an upward-sloping one in good times (high

values of ωt). These results are consistent with the findings of Giglio et al. (2024).
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Figure 3: The Term Structure of Equity Yields (Model Result). The upper panel

illustrates equity yields across maturities τ for recessions (low ω), expansions (high ω),

and the unconditional mean. Low ω corresponds to the first decile of ω, while high ω

represents the last decile. The lower panel depicts equity yields over the grid of values for

ω and ξ at two maturities. The parameter values reflect the baseline calibration of our

model.
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Figure 4: The Term Structure of Equity Yields (Model Result). The upper panel

illustrates equity yields across maturities τ for recessions (low ω), expansions (high ω),

and the unconditional mean. Low ω corresponds to the first decile of ω, while high ω

represents the last decile. The lower panel depicts equity yields over the grid of values for

ω and ξ at two maturities. The parameter values reflect the baseline calibration of our

model.
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5 Diagnostic Beliefs

The relevance of diagnostic beliefs. Diagnostic beliefs refer to the tendency of agents

to overestimate the probability of a good (bad) future state when current news is good

(bad). That is, after evaluating the current state of the economy and forming a diagnostic,

agents tend to believe that future states will resemble the present, leading to overreaction

(Bordalo et al., 2018, 2020, 2022). As Bordalo et al. (2022) point out, this overreaction

is rooted in psychology and has been supported by survey data. Moreover, the litera-

ture has shown that diagnostic beliefs play a central role in credit cycles (Bordalo et al.,

2018), asset prices (Bordalo et al., 2024), and business cycles (Bigio et al., 2025). Moti-

vated by these studies, we investigate the role of diagnostic beliefs in shaping equity yields.

Modeling diagnostic beliefs. Diagnostic beliefs capture the idea that investors’ expectations

about fundamentals are heavily influenced by recent news. Since the state variable—

relative (log) consumption at time t, denoted by ωt—reflects recent economic conditions,

we model agents’ beliefs about the drift of the endowment as follows:

µk,t(ωt) = µ+ θk · f(ωt), k ∈ {1, 2}, (42)

where µk,t denotes agent k’s subjective expectation of endowment growth, which is now

state dependent. The term θkf(ωt) captures the diagnostic distortion from the true drift

µ, and the linear function f(ωt) = ωt − ω̄ characterizes the state-dependent component

of diagnostic beliefs. The parameter θk represents the strength of agent k’s overreaction,

and we assume heterogeneity in this dimension:

θ1 > θ2 > 0. (43)

Under this specification, (short-term) beliefs are procyclical, consistent with earlier

evidence from Greenwood and Shleifer (2014) and more recently from Sias et al. (2024).

In good states of the world (ωt > ω̄), both agents are optimistic, but agent 1 overreacts

more strongly. Conversely, in bad states (ωt < ω̄), both agents are pessimistic, with agent

1 again displaying a stronger overreaction. We illustrate these beliefs in Figure 5.

Belief disagreement. To characterize belief disagreement between agents, we first recall

Girsanov’s theorem, which links the Brownian motion under agent k’s subjective measure

Pk to the objective measure P:

dZt = dZ̃k
t + σξ̃,k(ωt) dt, where σξ̃,k(ωt) =

µk,t(ωt)− µ

σ
≡ θk

σ
(ωt − ω̄). (44)

As discussed in Section 2.3, σξ̃,k(ωt) represents the extent of agent k’s belief distortion

per unit of risk. Unlike the constant-belief case (i.e., µk,t(ω) = µk), this disagreement

is now state dependent and characterized by an overreaction component. Consequently,

the Radon-Nikodym derivative of agent k’s subjective measure Pk with respect to the

objective measure P takes the form:

ξ̃k,t = exp

(
−1

2

∫ t

0
σ2
ξ̃,k

(ωs) ds+

∫ t

0
σξ̃,k(ωs) dZs

)
, (45)
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Figure 5: Diagnostic Beliefs. This figure plots µk,t = µ+ θk · (ωt − ω̄) for both agents,

k ∈ {1, 2}, and compares them with the true value of the endowment growth rate, µ. We

set θ1 = 0.5θmax and θ2 = 0.25θmax with θmax = µ/3σf . The parameter values used are

based on Table 1.

with dynamics defined by:
dξ̃k,t

ξ̃k,t
= σξ̃,kdZt (46)

We define the aggregate level of belief disagreement, under diagnostic beliefs, as:

ξ̃t ≡
ξ̃2,t

ξ̃1,t
= exp

(
−1

2

∫ t

0

[
σ2
ξ̃,2

(ωs)− σ2
ξ̃,1

(ωs)
]
ds+

∫ t

0
σξ̃(ωs) dZs

)
, (47)

where the belief difference function σξ̃(ωt) is defined as:

σξ̃(ωt) = σξ̃,2(ωt)− σξ̃,1(ωt) =
µ2,t(ωt)− µ1,t(ωt)

σ
≡ θ2 − θ1

σ
(ωt − ω̄). (48)

To fully characterize ξ̃t, we apply Itô’s lemma to Eq. (47) to derive its dynamics:

dξ̃t

ξ̃t
= −σξ̃,1σξ̃dt+ σξ̃dZt, (49)

Optimality and equilibrium. The agent’s optimal control problem described in Eq. (19),

as well as the definition of equilibrium outlined in Section 2.4, remain unchanged in struc-

ture. Consequently, the risk-sharing rule in Eq. (24) and the stochastic discount factor in

Eq. (25) also retain their form but now incorporate the updated definition of the Radon-

Nikodym derivative, denoted by ξ̃t and given in Eq. (45). Equipped with these objects,

we proceed to examine the role of diagnostic beliefs in shaping equity yields.
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Discussion on the values of θk. To determine a plausible range for θk, we use the fact

that f(ωt) = ωt − ω̄ ∼ N (0, σ2f ), where σf =
√
σ2/(2λx), along with the constraint that

diagnostic beliefs must remain positive, i.e., µk,t(ωt) > 0.

We focus on the interval [−3σf , 3σf ], which captures approximately 99% of the dis-

tribution of f(ωt). Within this range, the distorted belief is given by µk,t = µ+ θkf(ωt),

implying:

µ− 3θkσf ≤ µk,t ≤ µ+ 3θkσf .

To ensure positivity of µk,t across this range, we impose:

0 < µ− 3θkσf ≤ µk,t ≤ µ+ 3θkσf .

This condition yields an upper bound for θk:

θk <
µ

3σf
.

Since θk = 0 corresponds to the benchmark case of homogeneous beliefs (i.e., µ1,t =

µ2,t = µ), a strictly positive θk is required to introduce belief heterogeneity. Therefore,

the feasible range is:

0 < θk < θmax, where θmax =
µ

3σf
.

Given this bound, we have flexibility in selecting specific values for θk. In our baseline

scenario, we set θ1 = 0.5θmax and θ2 = 0.25θmax, implying that agent 1 overreacts twice

as strongly as agent 2 (i.e., θ1 = 2θ2).

5.1 The Term Structure of Equity Yields

We first rewrite the dividend price, Eq. (30), taking account the Radon-Nikodym deriva-

tive ξ̃1,t with diagnostic beliefs, as follows:

h
(τ)
t = e−ρτ e

γ1ωt+xt

ξ̃1,tc̃
−γ1
1,t

Et

[
e−(γ1−1)ωt+τ ξ̃1,t+τ c̃

−γ1
1,t+τ

]
. (50)

Recall the definition of equity yields from Eq. (34):

rτt =
1

τ
log

Yt

h
(τ)
t

. (51)

Considering the expression for dividend price, h
(τ)
t , defined by Eq. (50), equity yields

can be expressed as:

Lemma 5. Equity yields can be expressed as:

rτt = ρ− 1

τ
logEt [e

α] , (52)

where function α is defined as:

α = a(log ξ̃t+τ − log ξ̃t) + b(ωt+τ − ωt) + (log ξ̃1,t+τ − log ξ̃1,t), (53)

where a = γ1/(γ1 + γ2) and b = (γ1 + γ2 − 2γ1γ2)/(γ1 + γ2) < 0.
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Proof. See Appendix A.5.

Equation (52) indicates that equity yields depend on three state variables: ξ̃s, ξ̃1,s, and

ωs for s ∈ [t, t+ τ ]. In particular, equity yields are determined by the expected values of

these variables. Since diagnostic beliefs are state-dependent and influenced by the current

economic condition ωt, these variables are interrelated. This dependence simplifies the

computation of expectations in the equity yield expression (52), as shown in the following

lemma.

Lemma 6. Function α. The function α depends on the maturity τ and on the path

of the process ωs − ω̄ accumulated over the interval s ∈ [t, t + τ ]. Specifically, α can be

expressed as:

α = α
(
τ, {ωs − ω̄}t+τ

t , {dZs}t+τ
t ; Θ

)
, (54)

where Θ denotes the set of model parameters, including those governing risk aversion

heterogeneity and heterogeneous diagnostic beliefs.

Explicitly, α(·) is given by:

α = α0

∫ t+τ

t
(ωs−ω̄)2 ds+α1

∫ t+τ

t
(ωs−ω̄) dZs−bλx

∫ t+τ

t
(ωs−ω̄) ds+bσ

∫ t+τ

t
dZs, (55)

where:

α0 = −(1− a)θ21 + aθ22
2σ2

, α1 =
(1− a)θ1 + aθ2

σ
,

and the parameters a and b are defined as:

a =
γ1

γ1 + γ2
, b =

γ1 + γ2 − 2γ1γ2
γ1 + γ2

< 0,

with θ1 and θ2 denoting the overreaction parameters for each agent.

Proof. See Appendix A.6.

This lemma indicates that the function α depends on the sample paths of the deviation

of relative (log) consumption from its long-run mean, as well as on the path of shocks over

the interval [t, t + τ ]. This formulation relates equity yields to the state variable ωt and

its evolution over time until maturity. Although this approach avoids the explicit use of

ξ̃t and ξ̃1,t in the computation of equity yields, the calculation of the expectation Et[e
α]

in Eq. (52) remains complex and requires numerical integration.

Specifically, we employ Monte Carlo simulation, taking advantage of the fact that ωs

follows an Ornstein–Uhlenbeck process. For each maturity τ and a fixed initial state ωt,

we discretize the path {ωs}t+τ
t using N = 5000 time steps. We then approximate the

deterministic and stochastic integrals in Eq. (55) with discrete summations to compute α,

and hence exp(α). We perform M = 50, 000 simulations to approximate the expectation

Et[e
α] as the average of exp(α) across the M simulated paths. The complete procedure is

detailed in Appendix C.
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Based on our numerical results for Et[e
α], we proceed to compute equity yields using

Eq. (52), and present the results in Figure 6. Panel A compares equity yields under two

scenarios: one with homogeneous beliefs equal to the true value (µ1 = µ2 = µ), achieved

by setting θk = 0, and another where agents hold diagnostic beliefs.

In expansions, the less risk-averse agent overreacts to good news, expecting future

states to resemble the favorable current conditions. Anticipating high cash flows from

risky assets, he reduces his exposure to those assets—such as dividend strips—leading to

lower asset prices and, consequently, higher equity yields compared to the homogeneous-

belief case.

In recessions, this agent similarly overreacts, believing that poor economic conditions

will persist. However, his higher risk tolerance partially offsets his pessimistic beliefs,

prompting a reallocation toward risky assets, which in turn reduces equity yields. This

offsetting mechanism depends on the parameter values, as demonstrated in Panel B.

Panel B illustrates the effect of increasing the overreaction parameter for the less

risk-averse agent (θ1). In expansions, stronger overreaction further reduces his demand

for risky assets, pushing equity yields even higher. In contrast, during recessions, more

pessimistic beliefs dominate the agent’s risk tolerance, requiring higher equity yields to

hold dividend strips.
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Figure 6: The Term Structure of Equity Yields (Diagnostic Beliefs). Panel A

illustrates equity yields across maturities τ for recessions (low ω), expansions (high ω), and

the unconditional mean. Low values of ω correspond to the first decile of its distribution,

while high values represent the last decile. Panel B displays equity yields for both the

baseline case (as shown in Panel A) and a scenario in which θ1 increases from 0.5θmax to

0.75θmax, capturing a stronger overreaction by agent 1. The parameter θmax is set up at

µ/(3
√
σ2/(2λx)). Given that ωt ∼ N(ω̄, σ2ω) with σ

2
ω = σ2

2λx
, we construct the grid for ωt

over the interval [ω̄ − 3σω, ω̄ + 3σω], which approximately covers 99% of its realizations.

The model’s parameter values are based on Table 1.
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6 Conclusions

This paper studies how heterogeneity in belief and risk aversion affect the slope of the

equity term structure. Our endowment economy is populated by two agents with different

risk aversion and beliefs, and “catching up with the Joneses” preferences. The two agents

trade in dynamically complete markets. The habit preference allows the model to remain

stationary, ensuring the survival of both agents in the long run.

We show that the model is able to produce a procyclical slope of equity yields, con-

sistent with empirical evidence (van Binsbergen et al., 2013; Bansal et al., 2021; Giglio

et al., 2024). Next, we show that belief heterogeneity has significant implications for eq-

uity yields. First, the impact of belief heterogeneity depends on the business cycle. In

recessions, it raises equity yields across maturities, while in expansions it reduces them.

Second, the level effect on equity yields is more pronounced during recessions than ex-

pansions. Third, the magnitude of the effect is stronger for short-term assets than for

long-term assets.

Our results open several interesting research avenues. First, the model can be improved

by incorporating state-dependent variance of the state variable, which would allow it

to capture the conditional variance of equity yields—a feature not currently captured

by our model. Second, similar to the term structure of interest rates, the elasticity of

intertemporal substitution plays a key role in determining its shape. Therefore, exploring

whether this elasticity influences the equity term structure would be informative. To

this end, the model could be extended to consider recursive preferences. We leave these

extensions for future work.
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Appendix

A Lemma Proofs

A.1 Proof of Lemma 1.

Optimal consumption. The social planner solves the following static optimization problem

P in period t:

sup
{c1,t,c2,t}

{
e−ρt [λ1,tu(c1,t, Xt) + λ2,tu(c2,t, Xt)]

}
(56)

subject to

c1,t + c2,t ⩽ Yt (57)

The Lagrange function associated with P is

L =
{
e−ρt [λ1,tu(c1,t, Xt) + λ2,tu(Yt − c1,t, Xt)]

}
(58)

The FOC is given by

c1,t :
∂L
∂c1,t

= e−ρtλ1,tuc1,t + e−ρtλ2,tuc2,t(−1) = 0 (59)

Given Eq. (9), λk,t ≡ λk,0ξk,t is the stochastic weight of the agent-k’s utility in the social

planner utility function, and λk,0 is the initial endowment of agent-k, Eq. (59) becomes

λ1,0ξ1,te
−ρt(

1

Xt
)1−γ1c−γ1

1,t = λ2,0ξ2,te
−ρt(

1

Xt
)1−γ2c−γ2

2,t (60)

The marginal utility of the social planner is the Stochastic Discount Factor (SDF).

Defining mt as the equilibrium SDF, and c̃k,t ≡ ck,t
Yt

as consumption share, the above

expression can be rewritten as

mt ≡ m̂1,tc̃
−γ1
1,t = m̂2,tc̃

−γ2
2,t , (61)

where m̂k,t, defined below, is the SDF under the physical probability measure P when

agent-k is the sole agent in the economy:

m̂k,t = λk,0ξk,te
−ρte−γkωt−xt . (62)

The Interest rate rt and the price of risk ψt. For the interest rate dynamics and price

of risk, we have
dmt

mt
= −rtdt− ψtdZt (63)

So we need to apply Itô’s lemma to mt, given

dxt = λxωtdt (64)

dωt = λx(ω̄ − ωt)dt+ σdZt (65)
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dξk,t
ξk,t

= σξ,kdZt (66)

We also define the dynamics of m̂1,t and c̃1,t as follows:

dm̂1,t

m̂1,t
= −r̂1tdt− ψ̂1,tdZt (67)

dc̃1,t
c̃1,t

= µc̃1,tdt+ σc̃1,tdZt (68)

Applying Itô’s lemma to equations (67) and (68), we find the dynamic of their “log”

as follows:

d ln m̂1,t =

(
−r̂1,t −

1

2
ψ̂2
1,t

)
dt− ψ̂1,tdZt (69)

d ln c̃1,t =

(
µc̃1,t −

1

2
σ2c̃1,t

)
dt+ σc̃1,tdZt (70)

We use the SDF based on agent 1, then we take “log” on equation (61) as follows:

lnmt = ln m̂1,t − γ1 ln c̃1,t (71)

By Itô’s lemma:

d lnmt = d ln m̂1,t − γ1d ln c̃1,t (72)

d lnmt = −
[(
r̂1,t +

1

2
ψ̂2
1,t

)
+ γ1

(
µc̃1,t −

1

2
σ2c̃1,t

)]
dt−

[
ψ̂1t + γ1σc̃1,t

]
dZt (73)

To fully identify equation (73), we need to find the drift and diffusion terms of both

d ln m̂1,t and d ln c̃1,t.

From the definition (62), we know:

m̂1,t = e−ρtλ1,0ξ1,te
−γ1ωt−xt (74)

Applying “log”, we have:

ln m̂1,t = −ρt+ lnλ1,0 + ln ξ1,t − γ1ωt − xt ≡ f(t, ξ1,t, ωt, xt) (75)

So we need to apply Itô’s lemma to ln m̂1,t, given

dxt = λxωtdt (76)

dωt = λx(ω̄ − ωt)dt+ σdZt (77)

d ln ξ1t = −1

2
σ2ξ,1 + σξ,1dZt (78)

where, equation (78) is derived by applying Itô’s lemma to (??). Since the terms in

equation (75) are presented in summation form, the following holds:
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d ln m̂1,t = −ρdt+ d lnλ1,0︸ ︷︷ ︸
=0

+d ln ξ1,t − γ1dωt − dxt (79)

Then, using Eq. (76)-(78) into (79), we have:

d ln m̂1,t = −ρdt− 1

2
σ2ξ,1dt+ σξ,1dZt − γ1[λx(ω̄ − ωt)dt+ σdZt]− λxωtdt (80)

Rearranging terms:

d ln m̂1,t =

(
−ρ− 1

2
σ2ξ,1 − γ1λx(ω̄ − ωt)− λxωt

)
dt+ (σξ,1 − γ1σ) dZt (81)

Next, we compare Eq. (81) with Eq. (69):

d ln m̂1,t =

(
−r̂1,t −

1

2
ψ̂2
1,t

)
dt− ψ̂1,tdZt (82)

ψ̂1,t = γ1σ − σξ,1 = γ1σ − µ1 − µ

σ
(83)

where σξ,1 =
µ1−µ
σ .

r̂1,t +
1

2
ψ̂2
1,t = ρ+

1

2
σ2ξ,1 + γ1λx(ω̄ − ωt) + λxωt (84)

r̂1,t = ρ+
1

2
σ2ξ,1 + γ1λx(ω̄ − ωt) + λxωt −

1

2
ψ̂2
1,t (85)

r̂1,t = ρ+ µ1 + λx (γ1 − 1) (ω̄1 − ωt)−
σ2

2

(
γ21 + 1

)
(86)

r̂1,t = ρ+ γ1µ1 − λx (γ1 − 1)ωt −
1

2
σ2γ1 (1 + γ1) , (87)

Now we need the dynamics of the consumption share c̃1,t. We can observe that c̃1,t
is a function of {ωt, ξt}, from the consumption-sharing rule

c̃−γ1
1,t =

λ2,0
λ1,0

ξte
(γ1−γ2)ωt(1− c̃1,t)

−γ2 −→ c̃1,t = f (ωt, ξt) (88)

considering:

dωt = λx(ω̄ − ωt)dt+ σdZt (89)

dξt
ξt

= −σξ,1(σξ,2 − σξ,1)dt+
µ2 − µ1

σ
dZt (90)

We need implicit differentiation to take derivatives of c̃1,t w.r.t {ωt, ξt}. Then from

Itô’s lemma, we have the dynamics for c̃1,t. Bring Eq. (68) here:

dc̃1,t
c̃1,t

= µc̃1,tdt+ σc̃1,tdZt (91)

with derivatives obtained from the risk-sharing rule:
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∂f

∂ωt
= − (γ1 − γ2)

c̃1,tc̃2,t
γ1γ2

Rt (92)

∂f

∂ξt
= − c̃1,tc̃2,t

γ1γ2

Rt

ξt
(93)

∂2f

∂ωt∂ξt
= (γ1 − γ2)

c̃1,tc̃2,t
γ31γ

3
2

R3
t

ξt

(
γ1c̃

2
2,t − γ2c̃

2
1,t

)
(94)

∂2f

∂ω2
t

= (γ1 − γ2)
2 c̃1,tc̃2,tR

3
t

γ31γ
3
2

(
γ1c̃

2
2,t − γ2c̃

2
1,t

)
(95)

∂2f

∂ξ2t
=

c̃1,tc̃2,tR
2
t

γ21γ
2
2ξ

2
t

(
Rt

γ1γ2

(
γ1c̃

2
2,t − γ2c̃

2
1,t

)
+
γ1γ2
Rt

)
(96)

A. Drift term:

µc̃1,tc̃1,t = λx(ω̄ − ωt)
∂f

∂ωt

− σξ,1(σξ,2 − σξ,1)ξt
∂f

∂ξt

+
1

2
σ2
∂2f

∂ω2
t

+
1

2

(
µ2 − µ1

σ

)2

ξ2t
∂2f

∂ξ2t

+ (µ2 − µ1) ξt
∂f

∂ωt∂ξt
(97)

Introducing the derivatives:

µc̃1,tc̃1,t = λx(ω̄ − ωt)

(
− (γ1 − γ2)

c̃1,tc̃2,t
γ1γ2

Rt

)
− σξ,1(σξ,2 − σξ,1)ξt

(
− c̃1,tc̃2,t
γ1γ2

Rt

ξt

)
+

1

2
σ2
(
(γ1 − γ2)

2 c̃1,tc̃2,tR
3
t

γ31γ
3
2

(
γ1c̃

2
2,t − γ2c̃

2
1,t

))
+

1

2

(
µ2 − µ1

σ

)2

ξ2t

(
c̃1,tc̃2,tR

2
t

γ21γ
2
2ξ

2
t

(
Rt

γ1γ2

(
γ1c̃

2
2,t − γ2c̃

2
1,t

)
+
γ1γ2
Rt

))
+ (µ2 − µ1) ξt

(
(γ1 − γ2)

c̃1,tc̃2,t
γ31γ

3
2

R3
t

ξt

(
γ1c̃

2
2,t − γ2c̃

2
1,t

))
(98)

Then, factorizing a common term:
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µc̃1,tc̃1,t =
c̃1,tc̃2,t
γ1γ2

Rt

{
− (γ1 − γ2)λx(ω̄ − ωt)

+ σξ,1(σξ,2 − σξ,1)

+
1

2
σ2
(
(γ1 − γ2)

2 R2
t

γ21γ
2
2

(
γ1c̃

2
2,t − γ2c̃

2
1,t

))
+

1

2

(
µ2 − µ1

σ

)2( Rt

γ1γ2

(
Rt

γ1γ2

(
γ1c̃

2
2,t − γ2c̃

2
1,t

)
+
γ1γ2
Rt

))
+ (µ2 − µ1)

(
(γ1 − γ2)

R2
t

γ21γ
2
2

(
γ1c̃

2
2,t − γ2c̃

2
1,t

))}
(99)

Next, working on the fourth line:

µc̃1,tc̃1,t =
c̃1,tc̃2,t
γ1γ2

Rt

{
− (γ1 − γ2)λx(ω̄ − ωt)

+ σξ,1(σξ,2 − σξ,1)

+
1

2
σ2
(
(γ1 − γ2)

2 R2
t

γ21γ
2
2

(
γ1c̃

2
2,t − γ2c̃

2
1,t

))
+

1

2

(
µ2 − µ1

σ

)2( R2
t

γ21γ
2
2

(
γ1c̃

2
2,t − γ2c̃

2
1,t

)
+ 1

)
+ (µ2 − µ1)

(
(γ1 − γ2)

R2
t

γ21γ
2
2

(
γ1c̃

2
2,t − γ2c̃

2
1,t

))}
(100)

Then, split the forth line:

µc̃1,tc̃1,t =
c̃1,tc̃2,t
γ1γ2

Rt

{
− (γ1 − γ2)λx(ω̄ − ωt)

+ σξ,1(σξ,2 − σξ,1)

+
1

2
σ2
(
(γ1 − γ2)

2 R2
t

γ21γ
2
2

(
γ1c̃

2
2,t − γ2c̃

2
1,t

))
+

1

2

(
µ2 − µ1

σ

)2( R2
t

γ21γ
2
2

(
γ1c̃

2
2,t − γ2c̃

2
1,t

))
+

1

2

(
µ2 − µ1

σ

)2

+ (µ2 − µ1)

(
(γ1 − γ2)

R2
t

γ21γ
2
2

(
γ1c̃

2
2,t − γ2c̃

2
1,t

))}
(101)

Moving the last term of the fourth line to the second line
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µc̃1,tc̃1,t =
c̃1,tc̃2,t
γ1γ2

Rt

{
− (γ1 − γ2)λx(ω̄ − ωt)

+ σξ,1(σξ,2 − σξ,1) +
1

2

(
µ2 − µ1

σ

)2

+
1

2
σ2
(
(γ1 − γ2)

2 R2
t

γ21γ
2
2

(
γ1c̃

2
2,t − γ2c̃

2
1,t

))
+

1

2

(
µ2 − µ1

σ

)2( R2
t

γ21γ
2
2

(
γ1c̃

2
2,t − γ2c̃

2
1,t

))
+ (µ2 − µ1)

(
(γ1 − γ2)

R2
t

γ21γ
2
2

(
γ1c̃

2
2,t − γ2c̃

2
1,t

))}
(102)

Using the definition of σξ,1 and doing some algebra, the second line becomes

µc̃1,tc̃1,t =
c̃1,tc̃2,t
γ1γ2

Rt

{
− (γ1 − γ2)λx(ω̄ − ωt)

+
(µ2 − µ1)

σ2

(
µ1 + µ2

2
− µ

)
+

1

2
σ2
(
(γ1 − γ2)

2 R2
t

γ21γ
2
2

(
γ1c̃

2
2,t − γ2c̃

2
1,t

))
+

1

2

(
µ2 − µ1

σ

)2( R2
t

γ21γ
2
2

(
γ1c̃

2
2,t − γ2c̃

2
1,t

))
+ (µ2 − µ1)

(
(γ1 − γ2)

R2
t

γ21γ
2
2

(
γ1c̃

2
2,t − γ2c̃

2
1,t

))}
(103)

After doing algebra in the last three lines and using the identity c̃k,t = γkwk,t/Rt, they

are summarized in a single expression:

µc̃1,tc̃1,t =
c̃1,tc̃2,t
γ1γ2

Rt

{
− (γ1 − γ2)λx(ω̄ − ωt)

+
(µ2 − µ1)

σ2

(
µ1 + µ2

2
− µ

)
+

1

2

γ2w
2
2,t − γ1w

2
1,t

γ1γ2

[(
µ2 − µ1

σ

)2

+ 2(µ2 − µ1)(γ1 − γ2) + σ2(γ1 − γ2)
2

]}
(104)

Dividing by c̃1,t:
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µc̃1,t =
c̃2,t
γ1γ2

Rt

{
− (γ1 − γ2)λx(ω̄ − ωt)

+
(µ2 − µ1)

σ2

(
µ1 + µ2

2
− µ

)
+

1

2

γ2w
2
2,t − γ1w

2
1,t

γ1γ2

[(
µ2 − µ1

σ

)2

+ 2(µ2 − µ1)(γ1 − γ2) + σ2(γ1 − γ2)
2

]}
(105)

B. Diffusion term:

σc̃1,tc̃1,t = σ
∂f

∂ωt
+ ξt

µ2 − µ1
σ

∂f

∂ξt
(106)

= σ

(
− (γ1 − γ2)

c̃1,tc̃2,t
γ1γ2

Rt

)
+ ξt

µ2 − µ1
σ

(
− c̃1,tc̃2,t
γ1γ2

Rt

ξt

)
=
c̃1,tc̃2,t
γ1γ2

Rt

(
−σ (γ1 − γ2)−

µ2 − µ1
σ

)
σc̃1,t =

c̃2,t
γ1γ2

Rt (σ (γ2 − γ1) + σξ,1 − σξ,2) (107)

where σξ,i = (µi − µ) /σ for i = 1, 2.

Bring Eq. (73) here,

d lnmt = −
[(
r̂1,t +

1

2
ψ̂2
1,t

)
+ γ1

(
µc̃1,t −

1

2
σ2c̃1,t

)]
dt−

[
ψ̂1,t + γ1σc̃1,t

]
dZt (108)

Apply Itô’s lemma to Eq. (63), we have

d lnmt =

(
−rt −

1

2
ψ2
t

)
dt− ψtdZt (109)

We next compare Eq. (109) with Eq. (108).

A. Diffusion Term: Price of risk

ψt = ψ̂1,t + γ1σc̃1,t (110)

= γ1σ − µ1 − µ

σ
+ γ1c̃2,t

Rt

γ1γ2
[(σξ,1 − σξ,2) + (γ2 − γ1)σ]

= Rtσ +
µ− (

c̃1,t
γ1

Rtµ1 +
c̃2,t
γ2

Rtµ2)

σ

= Rtσ +
µ− (w1,tµ1 + w2,tµ2)

σ

= Rtσ +
µ− u

σ
, (111)

where in the fourth line we use the identity wk,t =
c̃k,t
γk

Rt, and the fifth line we use the

“aggregate belief” definition u.

31



B. Drift Term: Interest rate

rt +
1

2
ψ2
t =

(
r̂1,t +

1

2
ψ̂2
1,t

)
+ γ1

(
µc̃1,t −

1

2
σ2c̃1,t

)
(112)

rt = r̂1,t + γ1µc̃1,t − γ1ψ̂1,tσc̃1,t −
γ1(1 + γ1)

2
σ2c̃1,t (113)

Substituting every component:

rt = ρ+ γ1µ1 − λx (γ1 − 1)ωt −
1

2
σ2γ1 (1 + γ1) (114)

+
c̃2,t
γ2

Rt

{
− (γ1 − γ2)λx(ω̄ − ωt) (115)

+
(µ2 − µ1)

σ2

(
µ1 + µ2

2
− µ

)
+

1

2

γ2w
2
2,t − γ1w

2
1,t

γ1γ2

[(
µ2 − µ1

σ

)2

+ 2(µ2 − µ1)(γ1 − γ2) + σ2(γ1 − γ2)
2

]}
(116)

− γ1 (γ1σ − σξ,1)

(
c̃2,t
γ1γ2

Rt (σ (γ2 − γ1) + σξ,1 − σξ,2)

)
(117)

− γ1(1 + γ1)

2

(
c̃2,t
γ1γ2

Rt (σ (γ2 − γ1) + σξ,1 − σξ,2)

)2

(118)

We consider the definition of w2,t = c̃2,tRt/γ2.

Notice:

γ2w
2
2,t − γ1w

2
1,t ≡ γ2w2,t

c̃2,tRt

γ2
− γ1w1,t

c̃1,tRt

γ1
≡ Rt (c̃2,t − w1,t) (119)

Rtµ1 + w2,tγ1σσξ − w2
2,tσσξ(γ1 − γ2) ≡ Rt (w1,tµ1 + w2,tµ2) ≡ Rtut

Then,

rt = ρ− (Rt − 1)λxωt +Rtut − w2,tw1,tσξσRt

(
1

γ2
− 1

γ1

)
+
σ2ξ
2
w1,tw2,t

(
1− Rt

γ1γ2

)
σ2

2

(
−γ21 −Rt

)
+ w2,t

σ2

2

Rt (c̃2,t − w1,t)

γ1γ2
(γ1 − γ2)

2 − w2,tγ1σ
2 (γ2 − γ1)−

(1 + γ1)

2γ1
w2
2,tσ

2(γ1 − γ2)
2

Notice that the following holds:

w2,t(γ1 − γ2) ≡ γ1 −Rt

Factorize Rt:

rt = ρ− (Rt − 1)λxωt +Rtut − w2,tw1,tσξσRt

(
1

γ2
− 1

γ1

)
+
σ2ξ
2
w1,tw2,t

(
1− Rt

γ1γ2

)
+
σ2

2
Rt

{
−Rt

γ2
+
c̃1,tR

2
t

γ1γ2
− c̃1,tR

2
t

γ21
−Rt

}
(120)
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working on the second line (inside {·}):

−Rt

γ2
+
c̃1,tR

2
t

γ1γ2
− c̃1,tR

2
t

γ21
−Rt ≡ −Pt (121)

Introducing expression (121) into (120)

rt = ρ− (Rt − 1)λxωt +Rtut − w2,tw1,tσξσRt

(
1

γ2
− 1

γ1

)
+
σ2ξ
2
w1,tw2,t

(
1− Rt

γ1γ2

)
+
σ2

2
Rt {−Pt} (122)

A.2 Proof of Lemma 2.

Use the definition of SDF

h
(τ)
t = e−ρτ e

γ1ωt+xt

ξ1,tc̃
−γ1
1,t

Et

[
e−(γ1−1)ωt+τ ξ1,t+τ c̃

−γ1
1,t+τ

]
︸ ︷︷ ︸

f(ωt+τ ,ξt+τ ,ξ1,t+τ )

(123)

where

ξ1,t+τ = ξ1,te
− 1

2
σ2
ξ,1τ+σξ,1

∫ t+τ
t dZs , (124)

ωt+τ = ω̄ + (ωt − ω̄)e−λxτ + σ

∫ t+τ

t
e−λx(t+τ−s)dZs. (125)

The first part depends on state variables at t, which is straightforward computed since

we discretize ωt, xt, and ξt (and hence we can calculate c̃1,t). In the second part, we need

to find a way to calculate c̃1,t+τ , which is a function of ωt+τ and ξt+τ .

To compute c̃1,t+τ directly from the risk-sharing rule, we need to express ξt+τ and ωt+τ

as functions of s̃.

ξt+τ = ξte
aτ+

µ2−µ1
σ

∫ t+τ
t dZs , with aτ = −1

2
(σ2ξ,2 − σ2ξ,1)τ (126)

ωt+τ = ω̄ + (ωt − ω̄)e−λxτ + σ

∫ t+τ

t
e−λx(t+τ−s)dZs. (127)

Therefore,

ξt+τ = ξte
aτ+

µ2−µ1
σ

√
τ×s̃, with aτ = −1

2
(σ2ξ,2 − σ2ξ,1)τ (128)

ωt+τ = ω̄ + (ωt − ω̄)e−λxτ + σe−λxτ

√
e2λxτ − 1

2λx
× s̃. (129)

Likewise,

ξ1,t+τ = ξ1,te
− 1

2
σ2
ξ,1τ+σξ,1

∫ t+τ
t dZs (130)

ξ1,t+τ = ξ1,te
− 1

2
σ2
ξ,1τ+σξ,1

√
τ×s̃ (131)
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Thus, working on h
(τ)
t ,

h
(τ)
t = e−ρτ e

γ1ωt+xt

ξ1,tc̃
−γ1
1,t

Et

[
e−(γ1−1)ωt+τ ξ1,t+τ c̃

−γ1
1,t+τ

]
= e−ρτ e

γ1ωt+xt

ξ1,tc̃
−γ1
1,t

Et

[
e−(γ1−1)ωt+τ (s̃)ξ1,te

− 1
2
σ2
ξ,1τ+σξ,1

√
τ×s̃c̃−γ1

1,t+τ

]
(132)

= e−ρτ e
γ1ωt+xt

c̃−γ1
1,t

Et

[
e−(γ1−1)ωt+τ (s̃)e−

1
2
σ2
ξ,1τ+σξ,1

√
τ×s̃c̃−γ1

1,t+τ

]
(133)

= e−ρτ e
γ1ωt+xt− 1

2
σ2
ξ,1τ

c̃−γ1
1,t

Et

[
e−(γ1−1)ωt+τ (s̃)eσξ,1

√
τ×s̃c̃−γ1

1,t+τ

]
(134)

= e−ρτ e
γ1ωt+xt− 1

2
σ2
ξ,1τ

c̃−γ1
1,t

Et

[
e−(γ1−1)ωt+τ (s̃)eσξ,1

√
τ×s̃ [c̃1,t+τ (s̃)]

−γ1
]

(135)

A.3 Proof of Lemma 3.

rτt =
1

τ
log

 eωt+xt

e−ρτ e
γ1ωt+xt− 1

2σ2
ξ,1

τ

c̃
−γ1
1,t

Et

[
e−(γ1−1)ωt+τ (s̃)eσξ,1

√
τ×s̃ [c̃1,t+τ (s̃)]

−γ1
]
 (136)

=
1

τ
log

 eρτ−(γ1−1)ωt+
1
2
σ2
ξ,1τ c̃−γ1

1t

Et

[
e−(γ1−1)ωt+τ (s̃)eσξ,1

√
τ×s̃ [c̃1,t+τ (s̃)]

−γ1
]


=
1

τ
log

 g(ωt, c̃1,t)

Et

[
e−(γ1−1)ωt+τ (s̃)eσξ,1

√
τ×s̃ [c̃1,t+τ (s̃)]

−γ1
]
 (137)

A.4 Proof of Lemma 4.

1. From risk-sharing rule (??) and cck,t+τ ≡ log(c̃,t+τ ) for k ∈ {1, 2}, we have

ecc1,t+τ = a−1/γ1 (ecc2,t+τ )γ2/γ1 eωt(γ2−γ1)/γ1 . (138)

The equilibrium condition in goods market becomes

ecc1,t+τ + ecc2,t+τ = 1

We then use the following approximation in both equations:

ecck,t+τ ≈ 1 + cck,t+τ ,

and after some algebra, we obtain the following approximate linear relationship

cc1,t+τ ≈ − log a+ γ2
γ1 + γ2

− γ1 − γ2
γ1 + γ2

ωt+τ , a = (1− λ)/λ, ∀τ ≥ 0 (139)
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2. g(ωt+τ ) is defined as

g(ωt+τ )) = e−(γ1−1)ωt+τ−γ1cc1,t+τ

We then introduce equation (139) into g(ωt+τ ) and apply conditional expectation in

t, we have

Et [g(ωt+τ )] ≈ e
γ1

log a+γ2
γ1+γ2

+bµτ+
b2

2
σ2
τ (140)

logEt [g(ωt+τ )] ≈ γ1
log a+ γ2
γ1 + γ2

+ bµτ +
b2

2
σ2τ , (141)

where ωt+τ ∼ N(µτ , σ
2
τ ) with µτ and σ2τ defined by (??) and (??). The coefficient

b is expressed as b = (γ1 + γ2 − 2γ1γ2)/(γ1 + γ2) < 0. We also use the property of

normal distribution function: if x ∼ N(µ, σ2), E[ex] = eµ+
1
2
σ2
.

3. Using expressions (39) and (??), the equity yields (Eq. ??) can be expressed as

follows:

rτt = ρ− 1

τ
z(ωt)−

1

τ
logEt [g(ωt+τ )]

= ρ− 1

τ

(
−γ1

log a+ γ2
γ1 + γ2

− bωt

)
− 1

τ

(
γ1

log a+ γ2
γ1 + γ2

+ bµτ +
b2

2
σ2τ

)
= ρ− 1

τ

(
−bωt + bµτ +

b2

2
σ2τ

)
(142)

We then consider the expressions for µτ (Eq. ??) and στ (Eq. ??) in Eq. (142):

rτt = ρ+
1

τ

(
b(ωt − µτ )−

b2

2
σ2τ

)
= ρ+

1

τ

[
b(ωt − ω̄)

(
1− e−λxτ

)
− (bσ)2

4λx

(
1− e−2λxτ

)]
(143)

A.5 Proof of Lemma 5.

Substituting Eq. (50) into Eq, (51):
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rτt =
1

τ
log

 eωt+xt

e−ρτ+xt+γ1ωt−log ξ̃1,t c̃γ11tEt

[
e−(γ1−1)ωt+τ+log ξ̃1,t+τ c̃−γ1

1,t+τ

]
 ,

=
1

τ
log

 eρτ−(γ1−1)ωt+log ξ̃1,t c̃−γ1
1t

Et

[
e−(γ1−1)ωt+τ+log ξ̃1,t+τ c̃−γ1

1,t+τ

]
 ,

= ρ+
1

τ
log

 e−(γ1−1)ωt+log ξ̃1,t c̃−γ1
1t

Et

[
e−(γ1−1)ωt+τ+log ξ̃1,t+τ c̃−γ1

1,t+τ

]


= ρ− 1

τ
log

Et

[
e−(γ1−1)ωt+τ+log ξ̃1,t+τ c̃−γ1

1,t+τ

]
e−(γ1−1)ωt+log ξ̃1,t c̃−γ1

1t


= ρ− 1

τ
logEt

[
e−(γ1−1)(ωt+τ−ωt)+(log ξ̃1,t+τ−log ξ̃1,t)−γ1(log c̃1,t+τ−log c̃1,t)

]
. (144)

Next, cc1,t+τ ≡ log(c̃1,t+τ ) can be approximated in the same manner as shown in Eq.

(36), with the key difference that the Radon-Nikodym derivative is now given by ξ̃t under

diagnostic beliefs. Accordingly, cc1,t+τ can be expressed as:

cc1,t+τ ≈ −A−Bωt+τ − C log ξ̃t+τ , (145)

where the coefficients A, B, and C are defined as in Eq. Therefore,

log c̃1,t+τ − log c̃1,t ≈ −A−Bωt+τ − C log ξ̃t+τ − (−A−Bωt − C log ξ̃t),

≈ −B(ωt+τ − ωt)− C(log ξ̃t+τ − log ξ̃t)

Then, Eq. (144) becomes

rτt = ρ− 1

τ
logEt

[
e−(γ1−1)(ωt+τ−ωt)+(log ξ̃1,t+τ−log ξ̃1,t)−γ1(log c̃1,t+τ−log c̃1,t)

]
= ρ− 1

τ
logEt

[
e−(γ1−1)(ωt+τ−ωt)+(log ξ̃1,t+τ−log ξ̃1,t)−γ1(−B(ωt+τ−ωt)−C(log ξ̃t+τ−log ξ̃t))

]
= ρ− 1

τ
logEt

[
e−(γ1−1)(ωt+τ−ωt)+(log ξ̃1,t+τ−log ξ̃1,t)+γ1(B(ωt+τ−ωt)+C(log ξ̃t+τ−log ξ̃t))

]
= ρ− 1

τ
logEt

[
e[γ1B−(γ1−1)](ωt+τ−ωt)+(log ξ̃1,t+τ−log ξ̃1,t)+γ1C(log ξ̃t+τ−log ξ̃t)

]
= ρ− 1

τ
logEt

[
eb(ωt+τ−ωt)+(log ξ̃1,t+τ−log ξ̃1,t)+a(log ξ̃t+τ−log ξ̃t)

]
= ρ− 1

τ
logEt

[
ea(log ξ̃t+τ−log ξ̃t)+b(ωt+τ−ωt)+(log ξ̃1,t+τ−log ξ̃1,t)

]
= ρ− 1

τ
logEt [e

α] . (146)

where a = γ1/(γ1 + γ2) and b = (γ1 + γ2 − 2γ1γ2)/(γ1 + γ2) < 0.
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A.6 Proof of Lemma 6.

For simplicity, we bring the definition of the following variables from Eqs. (32), (45), and

(47):

ξ̃t = exp

(
−1

2

∫ t

0

[
σ2
ξ̃,2

(ωs)− σ2
ξ̃,1

(ωs)
]
ds+

∫ t

0
σξ̃(ωs) dZs

)
,

ξ̃k,t = exp

(
−1

2

∫ t

0
σ2
ξ̃,k

(ωs) ds+

∫ t

0
σξ̃,k(ωs) dZs

)
,

ωt+τ = ω̄ + (ωt − ω̄)e−λxτ + σe−λxτ

√
e2λxτ − 1

2λx
× s̃,

where:

σξ̃,k =
θk
σ
(ωt − ω̄),

σξ̃ = σξ̃,2 − σξ̃,1 =
θ2 − θ1
σ

(ωt − ω̄).

We begin with log ξ̃t:

log ξ̃t = −1

2

∫ t

0

[
σ2
ξ̃,2

− σ2
ξ̃,1

]
ds+

∫ t

0
σξ̃ dZs,

log ξ̃t+τ = −1

2

∫ t+τ

0

[
σ2
ξ̃,2

− σ2
ξ̃,1

]
ds+

∫ t+τ

0
σξ̃ dZs.

Then,

log ξ̃t+τ − log ξ̃t = −1

2

∫ t+τ

t

[
σ2
ξ̃,2

− σ2
ξ̃,1

]
ds+

∫ t+τ

t
σξ̃ dZs,

= −1

2

∫ t+τ

t

[
θ22
σ2

(ωs − ω̄)2 − θ21
σ2

(ωs − ω̄)2
]
ds+

∫ t+τ

t

θ2 − θ1
σ

(ωs − ω̄) dZs,

= −1

2

[
θ22
σ2

− θ21
σ2

] ∫ t+τ

t
(ωs − ω̄)2 ds+

θ2 − θ1
σ

∫ t+τ

t
(ωs − ω̄) dZs,

a(log ξ̃t+τ − log ξ̃t) = −a
2

[
θ22 − θ21
σ2

] ∫ t+τ

t
(ωs − ω̄)2 ds+ a

[
θ2 − θ1
σ

] ∫ t+τ

t
(ωs − ω̄) dZs.

Similarly, for ξ̃k,t we have:

log ξ̃1,t+τ − log ξ̃1,t = −1

2

∫ t+τ

t
σ2
ξ̃,1
ds+

∫ t+τ

t
σξ̃,1 dZs,

= −1

2

∫ t+τ

t

θ21
σ2

(ωs − ω̄)2 ds+

∫ t+τ

t

θ1
σ
(ωs − ω̄) dZs,

= −1

2

θ21
σ2

∫ t+τ

t
(ωs − ω̄)2 ds+

θ1
σ

∫ t+τ

t
(ωs − ω̄) dZs,

(147)
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Then,

a(log ξ̃t+τ − log ξ̃t) + log ξ̃1,t+τ − log ξ̃1,t =

{
−1

2

θ21
σ2

− a

2

[
θ22 − θ21
σ2

]}∫ t+τ

t
(ωs − ω̄)2 ds

+

{
θ1
σ

+ a

[
θ2 − θ1
σ

]}∫ t+τ

t
(ωs − ω̄) dZs,

= − 1

2σ2
{
θ21 + a

[
θ22 − θ21

]} ∫ t+τ

t
(ωs − ω̄)2 ds

+
1

σ
{θ1 + a [θ2 − θ1]}

∫ t+τ

t
(ωs − ω̄) dZs,

= −(1− a)θ21 + aθ22
2σ2

∫ t+τ

t
(ωs − ω̄)2 ds

+
(1− a)θ1 + aθ2

σ

∫ t+τ

t
(ωs − ω̄) dZs,

= α0

∫ t+τ

t
(ωs − ω̄)2 ds+ α1

∫ t+τ

t
(ωs − ω̄) dZs,

where:

α0 = −(1− a)θ21 + aθ22
2σ2

, α1 =
(1− a)θ1 + aθ2

σ
.

Next, for s ∈ [0, t+ τ ]:

dωs = λx(ω̄ − ωs) ds+ σ dZs,∫ t+τ

t
dωs =

∫ t+τ

t
λx(ω̄ − ωs) ds+

∫ t+τ

t
σ dZs,

ωt+τ − ωt =

∫ t+τ

t
λx(ω̄ − ωs) ds+

∫ t+τ

t
σ dZs,

b(ωt+τ − ωt) = −bλx
∫ t+τ

t
(ωs − ω̄) ds+ bσ

∫ t+τ

t
dZs.

Then, α is:

α = α0

∫ t+τ

t
(ωs − ω̄)2 ds+ α1

∫ t+τ

t
(ωs − ω̄) dZs − bλx

∫ t+τ

t
(ωs − ω̄) ds+ bσ

∫ t+τ

t
dZs
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B Numerical Integration Method

In this section, we describe the implementation of Gaussian quadrature procedure.

Step 1. We define ωt+τ ∼ N(µτ , σ
2
τ )

Step 2. We calculate

[x,weights] = qnwnorm(n, µτ , σ
2
τ ),

where x is a vector of ωt+τ for each point of the grid (n points):

x =


ωt+τ,1

ωt+τ,2

...

ωt+τ,n

 (148)

Step 3. We calculate c̃1,t+τ for each value of x (xi = ωt+τ,i) using the risk-sharing rule:

e−γ1xi (c̃1,t+τ,i)
−γ1 = a (1− c̃1,t+τ,i)

−γ2 e−γ2xi

Step 4. We define the function inside of the expectation operator: f(xi)

f(xi) = e−(γ1−1)xi (c̃1,t+τ,i)
−γ1

Then f(x) is a column vector with element equals to f(xi).

Step 5. We calculate the expectation:

E [f(x)] = weights′ × f(x)
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C Monte Carlo Simulation

In this section, we describe the implementation of Monte Carlo procedure for evaluating

Et [e
α], where process α is defined as:

α = α0

∫ t+τ

t
(ωs − ω̄)2ds+ α1

∫ t+τ

t
(ωs − ω̄) dZs − bλx

∫ t+τ

t
(ωs − ω̄)ds+ bσ

∫ t+τ

t
dZs.

We proceed in four steps:

• Step 1: Discretize the time interval [t, t + τ ]. Let N be the number of time

steps, and define the time increment as:

∆t =
τ

N
.

• Step 2: Simulate sample paths of ωs. We simulate M independent paths of the

process ωs over [t, t + τ ], which follows a OU process, using the Euler–Maruyama

discretization:

ωi+1 = ωi + λx(ω̄ − ωi)∆t+ σ
√
∆t · εi, εi ∼ N (0, 1), for i = 0,

with initial condition ω0 = ωt. The path of ωs is given by:

[ω0, ω1, ω2, . . . , ωN ] = [ωt, ωt+∆t, ωt+2∆t, . . . , ωt+N∆t].

• Step 3: Approximate the integrals along each path. For each simulated path,

approximate the components of α as:

A =

∫ t+τ

t
(ωs − ω̄)2ds ≈

N−1∑
i=0

(ωi − ω̄)2∆t,

B =

∫ t+τ

t
(ωs − ω̄) dZs ≈

N−1∑
i=0

(ωi − ω̄) ·
√
∆t · εi,

C =

∫ t+τ

t
(ωs − ω̄)ds ≈

N−1∑
i=0

(ωi − ω̄)∆t,

D =

∫ t+τ

t
dZs ≈

N−1∑
i=0

√
∆t · εi.

Then, for simulation m, we compute:

α(m) = α0A+ α1B − bλxC + bσD,

• Step 4: Compute the Monte Carlo estimate. The Monte Carlo estimator of

Et[e
α] is given by:

Et [e
α] ≈ 1

M

M∑
m=1

exp
(
α(m)

)
.
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